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Exopolysaccharides (EPS) are organic macromolecules produced by 

various microorganisms throughout the fermentation process from 

diverse carbon sources and released beyond the cell wall as slime or 

into the extracellular media as a jelly-like substance. Polymerization 

of simple or identical building components, which may be organized 

as repeating units within polymer molecules, produces EPS. EPSs are 

hypothesized to protect cells against desiccation, poisonous 

chemicals, bacteriophages, osmotic stress, allow attachment to solid 

surfaces, and aid in the production of biofilms. The rising need for 

natural polymers for industrial uses has drawn a lot of attention to 

EPS in recent years. Exopolysaccharides' material features, which 

include a plethora of functional uses and possibilities, have 

transformed the industrial and medicinal industries. Pharmacological, 

nutraceutical, functional food, cosmeceutical, herbicides, and 

insecticides are only a few of the applications of microbial 

exopolysaccharides, with anticoagulant, antithrombotic, 

immunomodulation, anticancer, and bioflocculant applications on the 

horizon.  

 

Keywords : EPS, macromolecules, natural polymers, pharmacological, 

nutraceutical, immunomodulation..  
 

 
INTRODUCTION 

 

Exopolysaccharides (EPS) are produced by a variety of bacteria, algae, 

fungi, and yeasts. Microorganisms' ability to manufacture EPS is a 

simple and rational response to stressors in the natural world. 

Exopolysaccharides have been examined in bacteria from 

hydrothermal vents, halobacteria, methanogens, autotrophic 

organisms, acidophiles, and microbes from ground water and sewage 

sludge (Dave et al., 2016). Several microorganisms isolated from harsh 

environments, such as deep-sea hydrothermal vents, Antarctic 

ecosystems, salty lakes, and geothermal springs, are being investigated  
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as possible sources of valuable biopolymers, such as 

EPSs (Nicolaus et al., 2010, Poli et al., 2011). Physical 

features of microbial exopolysaccharide, such as 

rheology in solution and capacity to form gel at low 

concentration, are critical for commercial success. The 

utility of bacterial biopolymers to humans has been 

discovered thanks to technological improvement 

(Nwodo et al., 2012). In nature, microbial 

polysaccharides are biodegradable and less hazardous 

to the environment than manmade polymers. This adds 

to their environmental friendliness in industrial 

applications, sewage disposal, and other environmental 

applications 

 

EPSs: Characteristics and Physiological Roles 

Microbial EPSs are vital in cellular interactions, 

nutrition, and micro- and macro environments. 

Organisms that produce EPS survive better in 

oligotrophic environments and live below the nutrient 

concentration threshold that is necessary (Wingender 

et al., 2012). Microorganism’s adherence to surfaces is 

aided by extracellular polymeric products, biofilms are 

formed as a result of this. EPS may potentially have a 

function in maintaining the biofilm's structure and 

stability. The majority of biofilm is made up of EPS. 

Microbial EPS promotes cell adhesion to solid surfaces 

and aids in the creation of aggregates, suggesting that 

it may play an indirect role in the exchange of genetic 

materials. The role of the EPS, as seen in various 

ecological niches, is determined by the 

microorganism's natural habitat. In general, microbial 

EPSs are assumed to protect microbial cells in their 

natural environment against conditions such as 

desiccation, osmotic stress, antibiotics, or poisonous 

substances (e.g., toxic metal ions, sulphur dioxide, and 

ethanol), protozoan predation, phagocytosis, and 

phage assault. A microorganism's capacity to envelope 

itself with a highly hydrated exopolysaccharide coating 

might protect it from desiccation and protozoan 

predation. In addition, the existence of a gelled 

polysaccharide layer around the cell may have a 

significant impact on the diffusion characteristics of 

the cell. Production of the polysaccharide was linked to 

dramatically improved protection under heat stress 

(60-fold), acid stress (20-fold), and simulated gastric 

juice stress in heat stress tests (15-fold). In pathogenic 

bacteria, the creation of EPS in the form of capsules is 

common, and the pathogenicity of an organism is 

determined by the rate of synthesis and the volume of 

EPS generated. Capsules containing the pathogen 

enable phagocytosis to be avoided. One interesting 

finding is that all capsular polysaccharides do not 

stimulate the immune system, possibly because their 

chemical structures are similar to those on the host 

cell surface. The lectins, which are polysaccharide-

binding proteins released by plants (e.g., Trifolin A), 

are essential for the formation of the symbiotic 

relationship between Rhizobium spp. and leguminous 

plants. EPS may aid bacterial cell adherence to solid 

surfaces and the production of biofilms, as well as 

cellular recognition. Capsular polysaccharide may help 

bacteria cling to biological surfaces, making it easier 

for germs to colonize different ecological niches. The 

EPS was discovered in adherent biofilms (Tsuda et al., 

2008); the EPS might serve as both initial and 

persistent adhesion chemicals (Whitfield, 1988). 

Furthermore, EPS may act as adhesive factors and 

encourage plant-bacteria interactions, such as levan 

synthesis by the sugar cane root invading G. 

diazotrophicus (Allison and Sutherland, 1987). Oral 

streptocci produce homopolysaccharides (glucans and 

fructans), which have a significant impact on the 

production of dental plaque. They have a role in 

bacterial adhesion to one other and to the tooth 

surface, as well as influencing material transport via 

plaque and functioning as extracellular energy stores 

(Hernández et al., 1995). EPS generated by LAB has 

been linked to cellular recognition, adhesion, and the 

development of biofilms in several studies (Russell, 

1990 and De Palencia, 2009). 

 

Applications of EPS 

They're used in the food, textile, detergent, and 

beverage sectors, as well as the pharmaceutical, 

biotechnological, agricultural, paper, paint, and 

petroleum industries, as well as drug delivery and 

cancer therapy, and culture media formulation 

(Quesada et al., 1993). 

 

Food and Beverages 

Lactic acid bacteria (LAB) generate 

exopolysaccharides (EPS), which are used to make 

fermented dairy products like yoghurt, drinkable 

yoghurt, cheese, fermented cream, and milk-based 

sweets (Duboc and Mollet, 2001). EPS can function as 

both texturizers and stabilisers, increasing the 

viscosity of a finished product and binding water and 

reacting with it (Tabibloghmany and Ehsandoost E, 

2014). As a result, EPS can reduce the production of 

hazardous by-products and enhance the product’s 

stability. Furthermore, it has been suggested that EPS 

can have a favourable impact on gut health (Broadbent 
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et al., 2003). Exopolysaccharides increase the quality 

of foods that have been processed with its aid. LAB 

produced EPS is commonly used to enhance the body 

and texture of yoghurt and other fermented milk 

products such as dahi (Whistler and Daniel JR, 1990). 

Different EPS generating cultures of L. Lactis subsp. 

Lactis PM23, S. thermophilus ST, and L. Lactis are used 

to make low fat dahi. Kefir is an Eastern European 

traditional self-carbonated, somewhat alcoholic 

fermented milk (Kulicke and Heinze, 2005, Becker, 

1998). Kefir grains, which are made up of 

homofermentative and heterofermentative LAB, 

yeasts, and acetic acid bacteria, are used to make kefir. 

Dextran derived from Leuconostoc mesenteroides is 

used in commercial baking improvers. Weissella 

strains that produce EPS in sourdoughs enhanced the 

textural qualities and bread quality (Yun, 1996 and 

Yamamoto et al., 1990). Lactobacilli-derived polymers 

are thus predicted to improve one or more of the 

following technical aspects of dough and bread such 

as: (i) dough absorption, (ii) dough rheology and 

machinability, (iii) dough stability during frozen 

storage, (iv) loaf volume, and (v) bread staling. 

Fructose-oligosaccharides (FOS) are attractive for 

culinary applications because they have lower 

sweetness than sucrose, are calorie-free, and are 

noncariogenic (Daba and Ezeronye, 2003). Inulin and 

FOS are used in food primarily for their prebiotic 

characteristics. Surprisingly, fructose-based polymers 

may be digested by gut bacteria, resulting in improved 

intestinal flora and improved mineral absorption 

(Hidalgo et al., 2012, Maiden et al., 2013). 

 

Prebiotic effect  

Korakli et al. (Crescenzi, 1995) effectively proved the 

ability of fructan-type EPS generated by one strain of L. 

sanfranciscensis to behave as prebiotic substrates. 

Salazar et al. (Xu et al., 2006) demonstrated that EPS 

produced by intestinal Bifidobacteria serves as a 

fermentable substrate for microorganisms in the 

human gut environment, altering interactions between 

intestinal populations.  

 

Pharmaceuticals 

The intrinsic biocompatibility and apparent non-toxic 

character of several of these bacterial 

exopolysaccharides has led to their usage as scaffolds 

or matrices in tissue engineering, drug delivery, and 

wound dressing, making them more appealing than 

polysaccharides derived from plants and microalgae. 

Antitumor and immune-stimulating polysaccharides 

have been found in polysaccharides of Basidiomycetes 

mustran. They also have antiviral properties. 

Exopolysaccharides have been shown to have health-

promoting properties such as cholesterol reduction, 

immunological modulation, and prebiotic benefits. 

 

Antigastritis, antiulcer and cholesterol lowering 

effects 

Purified EPS from S. thermophilus CRL 1190 has been 

shown to help prevent chronic gastritis (Faber et al., 

2001). Nagaoka et al. (Shah and Prajapati, 2013) found 

that EPS generated by bifidobacteria, lactobacilli, and 

streptococci strains have antiulcer properties. The 

EPS-producing strain Lc. Lactis ssp. cremoris SBT0495 

is used to make fermented milk which has cholesterol-

lowering effects; however, the mechanism is uncertain 

(Tamime et al., 2005, Galle et al., 2010).  

 

Antitumour properties  

L. helveticus ssp. jugurti generated an antitumor EPS, 

according to Oda et al. (Kitazawa et al., 1992). The 

scientists came to the conclusion that the EPS's 

anticancer effect may be due to its host-mediated 

activities. EPS has also been shown to have 

immunomodulatory and anticancer properties in a few 

studies (Colliec-Jouault et al., 2001, Vanhooren and 

Vandamme, 2000, Martin et al., 1984). B. adolescentis 

slime was shown to have immunomodulatory effects 

on mice splenocytes (Baruah et al., 2016). The slime-

forming Lc. Lactis ssp. cremoris KVS20 demonstrated 

anticancer action, according to Kitazawa et al. (Arena 

et al., 2009), and the slime included significant B-cell 

dependent mitogenic chemicals. Bacterial EPSs would 

be linked to anti-tumor, anti-viral, anti-inflammation, 

inducer of interferon production, platelet aggregation 

inhibition, and colony stimulating factor actions, 

among others (CSF). EPSs generated by marine Vibrio 

and Pseudomonas sp., for example, exhibit anticancer, 

antiviral, and immunostimulatory properties. 

 

Some polysaccharides are used in vaccinations 

generally combined with appropriate protein. 

Meningitis vaccines and multivalent polysaccharide 

vaccines against Streptococcus pneumoniae and 

Klebsiella have been developed in this manner. 

 

Anti-mutagenic properties 

Mutagens such as heterocyclic amines were bound to 

EPS-attached cells of strain L. plantarum, and the 

mutagens were inactivated by attaching to EPS 

(Sutherland IW, 1998, Otero and Vincenzini M, 2003). 

http://www.ijlsci.in/
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Cosmetics: 

Pharmaceutical cream formulations and barium 

sulphate preparations both benefit from the excellent 

suspension stability of EPS. The cosmetic sector, for 

example, uses this high cream stability advantage in 

toothpaste technology, where the toothpaste holds its 

components (high viscosity) and then brushes easily 

onto and off the teeth (high shear thinning). 

  

Bioremediation 

Bacterial polysaccharides have been demonstrated to 

have the capacity to bind cations and have ion 

absorption capabilities, bolstering its effectiveness in 

bioremediation procedures. The degree of acetylation 

influences the selectivity of certain EPS for metal 

binding sites (Rehm, 2010). These characteristics 

might be extremely useful in sewage treatment, 

particularly for the elimination of harmful heavy metal 

contaminants (Sutherland, 1983). They have a higher 

metal complexing capability; therefore, they may be 

used as a complement or potential replacement for 

conventional metal removal methods in mining and 

industrial waste. In the presence of an EPS layer, 

mineral solubilization is observed to have a 

considerable impact. Acidithiobacillus ferrooxidans also 

produces an EPS layer, which aids in the extraction of 

metals from sulphidic minerals (Choi and Yun, 2006). 

Exopolysaccharide-producing bacteria have also been 

employed as a bioinoculant to increase rhizosphere 

soil aggregation and water retention as a function of 

soil water content. 

 

Cryopreservation  

The most acceptable approach for the long-term 

preservation of microbial cultures is lyophilization 

with cryoprotectants (one or more chemicals that 

protect cell membranes against the effects of exposure 

to low temperature) (Yu et al., 2011). 

 

 

Table 1. Applications of different microbial EPSs along with their sources in food and beverage industry (Galle et 

al., 2012) 

Fermented foods 

and beverages 

EPS-producing 

microorganisms  

Applications 

Fermented beverages   

Kefir 

Yogurt 

 

Mexican Pulque 

L. kefiranofaciens 

S. thermophilus; L. 

delbrueckii subsp. 

Bulgaricus 

Leuc. mesenteroides  

To minimize the quantity of additional milk solids, 

increase end product viscosity, texture, stability, and 

mouthfeel, and eliminate syneresis (whey separation) 

during fermentation or storage (Rühmkorf et al., 2012, 

Wolter et al., 2014a and 2014b, Palomba et al., 2012). 

Fermented breads   

Gluten-free breads  W. cibaria; W. confusa; Leuc. 

mesenteroides; L. 

sanfranciscensis 

Improved texture and quality (Galle et al., 2011, Galle et 

al., 2014, Di Cagno et al., 2014, Wang et al., 2012, Hassan 

et al., 2004, Kumar et al., 2007).  

Wheat  Leuc. lactis, L. curvatus Enhanced viscoelasticity and quality (Nagaoka et al., 

1994)  

Gluten-free sorghum  L. casei FUA3185 and 

FUA3186, L. buchneri 

FUA3154 

Enhanced rheology of sorghum sourdoughs (Escalante et 

al., 2008)  

Cheeses   

Mexican Chihuahua  EPS-producing starter 

culture 

Enhanced cheese yield and texture (van Kranenburg et al., 

1999)  

Low-fat Italian 

Cacciotta type  

S. thermophilus Pleasant to taste and chew, better flavor, overall 

acceptability (Cosa et al., 2011)  

Reduced-fat  S. thermophilus TM11 Enhanced moisture content and high yield (Vanhooren 

and Vandamme, 1998)  

Egyptian Karish   Improved acceptability, spreadability, and creaminess 

(Mabinya et al., 2012)  
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Table 2. Microbial biopolymers and their applications in other industries (Aparna et al., Nakajima et al., 1992) 

Source Organism Biopolymer Applications 

Bacillus, 

Streptococcus, 

Pseudomonas, 

Zymomonas  

Levan As a viscosifer and stabilizer in the preparation of sweet confectionery 

and ice cream 

Leuconostoc 

mesenteroides  

Dextran Used for thickening and gelation of syrups (van de Guchte et al., 2002), 

gelling agent in gum and jelly sweets. To increase moisture retention, 

viscosity, and sugar crystallization resistance in confectionery items, 

used in ice creams and puddings to give the desired body, texture and 

mouth feel (de Valdez et al., 1995). Dextran has been employed as a 

component of various chromatographic stationary phases, in separation 

technology and aqueous two-phase systems (Dilna et al., 2015) and as a 

blood plasma extender (Kumar and Mody, 2009), blood flow 

improvement agent, and cholesterol reducing agent in veterinary and 

human medicine, and as a micro-carrier in tissue/cell culture. 

Pseudomonas 

aeruginosa and 

Azotobacter 

vinelandii  

Alginate As a viable cell and enzyme immobilization matrix, a covering for 

seedlings and plants' roots to avoid desiccation, a microencapsulation 

matrix for fertilizers, insecticides, and nutrients, and hypoallergic 

wound-healing tissue 

Xanthomonas 

campestris 

Xanthan Used in both food and non-food applications (De Vuyst L and Degeest, 

1999), suspending agent in food industries, such as dairy products, 

beverages, confectionary, dressing, bakery products, syrups, and pet 

foods, as well as the oil, pharmaceutical, cosmetic, paper, paint, and 

textile industries. Also used in secondary and tertiary crude oil recovery, 

paints, pesticide and detergent formulations, pharmaceuticals, 

cosmetics, and printing inks, as a viscosifier, stabilizer, emulsifier, and 

food as a thickening and stabilizing agent, often used in combination 

with guar gum. This biopolymer, according to Becker et al. (Wang et al., 

2015), has a high viscosity at low concentrations in solution, significant 

pseudoplasticity, and is stable throughout a wide pH, temperature, and 

ionic strength range.  

Acetobacter spp.  Cellulose In human medicine, as temporary artificial skin to cure burns or surgical 

wounds, in nutrition, as natural non-digestible fibers (that can be 

impregnated with amino acids, vitamins, and minerals), and in 

separation technology, as acoustic membranes in audio-visual 

equipment. 

Streptococcus equii 

and Streptococcus 

zooepidemicus 

Hyaluronic 

acid 

N-acetyl glucosamine, glucuronic acid used in ocular surgery, as a 

replacement for eye fluid, in artificial tear-liquid, as a synovial fluid 

replica, in wound healing, and in the beauty sector (lotions, moisturizing 

agent) 

Sphingomonas 

paucimobilis 

Gellan As a food stabilizer and suspending agent. As a gelling agent for 

hardening culture medium, particularly for research on marine 

microorganisms. 

Sinorhizobium 

meliloti M5N1CS, 

Gluconacetobacter 

hansenii 

Glucuronan Food and cosmetics products 

Rhizobium meliloti 

and Agrobacterium 

Curdlan Curdlan, in combination with zidovudine (AZT), acts as a gelling agent 

and has significant antiretroviral activity (anti-AIDS-drug) 

http://www.ijlsci.in/
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radiobacter 

Alcaligenes faecalis 

var. myxogenes 

Succinoglycan As a gelling agent and other functions are same as for curdlan 

E. coli, Shigella spp., 

Salmonella spp., 

Enterobacter spp. 

Colanic acid Cosmetics and personal care products 

Acetobacter xylinum Acetan As a food viscosifier and gelling agent. It is used to make sweet 

confectionery and vinegar. 

Acinetobacter 

calcoaceticus 

Emulsan Crude-oil recovery and other applications are similar as for alginate 

 

 

 

Cryoprotectants such as HoPS (homopolysaccharides) 

and dextran have been employed to prepare bacterial 

suspensions before drying (Patel and Prajapati, 2013). 

HePS can also be utilized to protect cells against 

freezing. HePS from LAB has also been shown to have 

antioxidant action in the food and fermentation 

sectors. HePS exhibits antioxidant effects that are 

equivalent to those of the powerful antioxidant 

ascorbic acid (Di Cagno et al., 2006). HePS from 

Lactobacillus plantarum RJF4 has been proven to 

scavenge DPPH free radicals (measurement of 

antioxidant activity). The rheological characteristics of 

EPS allow the generation of viscous solutions at low 

concentrations (0.05–1.0 percent) and stability 

throughout a wide temperature, pH, and ionic strength 

range (Kumar et al., 2007). In the food and 

pharmaceutical industries, EPS with non-Newtonian 

and pseudo-plastic behavior can be employed as a 

viscosifier (Dudman, 1977, Korakli et al., 2002). 

Although various HePS from LAB have been recorded, 

HoPS from LAB are widely employed as commercial 

viscofiers. 

 

Miscellaneous applications 

Alteromonas infernus, collected from deep-sea 

hydrothermal vents, was shown to produce a low 

molecular weight heparin-like EPS with anticoagulant 

properties (Rodríguez et al., 2008). Clavan, a 

polysaccharide containing L-fructose, has potential use 

in limiting tumor cell colonization of the lung, 

regulating white blood cell formation, treating 

rheumatoid arthritis, synthesis of antigens for 

antibody generation, and in cosmeceuticals as a skin 

moisturizing agent (Salazar et al., 2008). In vitro 1,1-

diphenyl-2-picrylhydrazyl radical scavenging activity, 

chelation of ferrous ions, prevention of linoleic acid 

peroxidation, and reducing power were all exhibited in 

the EPS of L. paracasei subsp. paracasei NTU 101 and L. 

plantarum NTU 102. According to Martin et al. (Schwab 

et al., 2008), certain bacterial EPS alone or in 

conjugates can operate as a highly effective somnogen, 

so sleep induction using a natural product with 

minimal adverse effects will eliminate the need for 

xenobiotics. 

 

Future Prospects for Bacterial EPS 

Although bacterial EPS has a wide range of 

applications in industry (textiles, dairy, cosmetics, 

etc.), health (medicine and pharmaceuticals), and the 

environment (remediation, flocculation, etc.), its use in 

the flocculation process will be a significant milestone 

for health promotion and environmentally friendly 

use, particularly in municipal and wastewater 

treatment processes. Microbial EPS might be used as a 

safe flocculant alternative. Biopolymers generated by 

non-lactic bacteria such as VirgiBacillus spp., Bacillus 

spp., and Artrobacter spp. have been shown to have a 

high flocculation effectiveness (Torino et al. De Vuyst 

and Degeest, 1999). These findings suggest that 

bacterial EPS successfully induces flocculation and can 

thus be used in large-scale industrial operations, 

specifically in the treatment of water and wastewater. 

EPS may potentially have a role in the absorption of 

metal ions and the supply of lower oxygen tension 

(Vaningelgem et al., 2004, Wang et al., 2008). Many 

metal ions, including Fe2+, Zn2+, Cu2+, and Co2+, might 

be bound by EPS (Qin et al., 2007). It could also 

combine colloidal and suspended particles and 

performed as an excellent flocculating agent.  

 

 

CONCLUSION: 

 

Microorganisms have evolved a variety of strategies 

for surviving in harsh environments, particularly in 

soils. EPS generation is a crucial approach for 
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maintaining a moist environment, capturing nutrients, 

promoting chemical processes, and protecting cells 

from environmental factors, antibiotics, and predator 

assault. Extracellular polymers from bacteria have a 

wide range of activities that are dependent on their 

composition and structure. Extracellular polymeric 

compounds have long piqued researchers' attention 

due to their biodegradability, biocompatibility, and 

ability to thicken, gel, and emulsify. To attain high 

yields, the polymers and their synthesis may be 

modified, but this requires the characterisation and 

physiological investigation of EPS-producing bacteria. 

Understanding the underlying processes and 

regulatory pathways is necessary for improving 

polymer synthesis. Novel EPS and polymers generated 

by less characterized microbial strains are still 

underexplored, in contrast to the considerable study 

focused on enhancing EPS output and changing the 

features of well-known polymers. Understanding the 

structure and characteristics of EPS is critical to 

comprehending how they interact with soil. The 

integration of multiple domains and the combining of 

traditional microbiological techniques with new high-

throughput approaches are critical for expanding 

knowledge of EPS composition, structure, function, 

and applications. 
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