

Open Access

Ethno-veterinary Medicinal Plants of India: A Review on Traditional Remedies for Anthrax in Livestock

Marathe Vishal R¹ & Deshmukh Muzammil M*

P.G. Dept. of Botany, N.E.S. Science College, Nanded, MS, India ¹Email: <u>dr.vishalmarathe@gmail.com</u> *Corresponding author: <u>dr.muzammildeshmukh@gmail.com</u>

Manuscript details:

Received: 03.12.2024 Accepted: 29.12.2024 Published: 31.12.2024

Cite this article as:

Marathe Vishal R & Deshmukh Muzammil M (2024) Ethno-veterinary Medicinal Plants of India: A Review on Traditional Remedies for Anthrax in Livestock, *Int. J. of Life Sciences*, 12 (4): 513-520.

Available online on <u>http://www.ijlsci.in</u> ISSN: 2320-964X (Online) ISSN: 2320-7817 (Print)

Open Access This article is licensed under a Creative Commons Attribution 4.0

International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

ABSTRACT

Ethno-veterinary medicinal plants play important role in treatment of livestock. Indian economy mostly depends on these animals as they contribute 4.8 - 6.5 % to the GDP of India every year. Ethnoveterinary medicine refers to people's beliefs, knowledge, skills and practices related with animal care and their treatment. In India, the anthrax is a highly infectious and fatal disease of wild and domestic herbivores such as antelope, cattle, camels, goat, sheep etc. Anthrax is an infective disease caused by spore forming bacterium Bacillus anthracis. In past years, the anthrax cases have been reported from Andhra Pradesh, Tamil Nadu, Telangana State, Karnataka, Maharashtra and Madhya Pradesh. This paper overviews the importance of locally available ethno-veterinary medicinal plants of India against anthrax disease to save the livestock of farmers. Total number of 37 plant species of 34 Genera belonging to 25 Families used for the treatment of anthrax as ethno-veterinary medicine in India have been recorded. The conservation of these plants is important as they are facing threat due to anthropogenic activities.

Keywords: Ethno-veterinary medicine, anthrax, livestock, India

INTRODUCTION

Indian economy mostly depends on these animals as they contribute 4.8 – 6.5 % to the GDP of India every year. As India is agriculture based country, these animals plays an important role in the social upliftment of the peoples of India by various means. They are the most common livestock reared in India. According to 20th livestock census of Department of Animal Husbandry and Dairying, Government of India, there were 192.49 million cattle, 109.85 million buffalo, 74.26 million sheep & 148.88 million goats. Ethno-veterinary knowledge is acquired through practical experience and has traditionally been passed down orally from generation to generation. Documentation and validation of ethno-veterinary medicinal plants arose in early 1980s. The documentation of ethno-veterinary knowledge from

extinction as the farmers or tribal who have this knowledge die and the knowledge also disappear with them. To save such ethnic knowledge by documentation is one of the objectives of conservation of biodiversity.

Anthrax is primarily a disease of herbivores. However, it also occurs in omnivores and rarely in carnivores. Anthrax is an acute infective zoonotic disease caused by spore forming bacterium *Bacillus anthracis* in all warm blooded (poikilothermic) animals like cattle, camels, goats, sheep and other herbivores. It usually occurs after sudden climatic change. The disease is of considerable economic and public health significance due to its rapid spread, high mortality rate.

Bacillus anthracis is a Gram-positive, spore-forming bacterium capable of surviving in harsh environmental conditions for decades due to its highly resistant endospores. These spores are the primary mode of transmission and can infect livestock through ingestion, inhalation, or cuts in the skin. Upon entering the host, the spores germinate, producing toxins that disrupt cellular functions and lead to rapid disease progression (Anonymous, 2008). Anthrax outbreaks in India are particularly common in regions with poor livestock vaccination coverage and where grazing lands are contaminated with spores. States like Andhra Pradesh, Odisha, and Tamil Nadu have reported frequent outbreaks due to hot and humid climates that favor spore survival.

Study area:

India is a rich repository of traditional healing practices, deeply rooted in its cultural and ecological diversity. The vast knowledge of ethno-veterinary medicine reflects the country's reliance on natural resources for livestock healthcare, especially in rural and tribal areas. This study focuses on highlighting the role of ethno-veterinary medicinal plants in addressing anthrax, a critical zoonotic disease affecting livestock and rural livelihoods in India. While India possesses a wide array of medicinal flora, this review primarily draws references from seven states: Andhra Pradesh, Tamil Nadu, Karnataka, Meghalaya, Madhya Pradesh, Maharashtra, and Telangana (Fig.1).

Enumeration:

The enumeration of ethno-veterinary medicinal plants used against anthrax in India reveals a total of 37 species belonging to 34 genera and 25 families Table 1.

Fig.1 Map showing the seven states in India where the use of ethno-veterinary medicinal plants against anthrax has been recorded.

SN	Botanical name	Local	Family	Part	Study area	Reference	Name of Journal/
		name	,	used	,		Book
1	Phyllanthus amarus Schum & Thonn.	-	Euphorbiaceae	Fruit	Betul Dist. (M.P.)	Deshmukh & Pocchi, 2017	International Journal of Applied Research
2	Ocimum basillicum	-	Lamiaceae	Leaves	Betul Dist. (M.P.)	Deshmukh & Pocchi, 2017	International Journal of Applied Research
3	Aristolochia bracteolata Lam.	Aaduthinn apalai	Aristolochiacea e	Leaves	Southern districts of T.N.	Ganesan <i>et al</i> 2008	Indian Journal of Traditional Knowledge
4	Nicotiana tabacum L.	Pugai elai	Solanaceae	Leaves	Southern districts of T.N.	Ganesan <i>et al</i> 2008	Indian Journal of Traditional Knowledge
5	Zingiber officinale Rose.	Ingi	Zingiberaceae	Leaves	Southern districts of T.N.	Ganesan <i>et al</i> 2008	Indian Journal of Traditional Knowledge
6	<i>Solanum</i> <i>xanthocarpum</i> Shrader & Wendl.	Kandakat hari	Solanaceae	Leaves	Southern districts of T.N.	Ganesan <i>et al</i> 2008	Indian Journal of Traditional Knowledge
7	Capsicum annum L.	Milagai	Solanaceae	Fruits	Southern districts of T.N.	Ganesan <i>et al</i> 2008	Indian Journal of Traditional Knowledge
8	Piper nigrum L.	Milagu	Piperaceae	-	Southern districts of T.N.	Ganesan et al 2008	Indian Journal of Traditional Knowledge
9	Abrus precatorius L.	Guruvinda	Fabaceae	Stem bark	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
10	Vitex negundo L.	-	Verbenaceae	Leaves	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
11	Curculigo orchioides	-	Hypoxidaceae	Tubers	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
12	Piper nigrum L.	Pepper	Piperaceae	-	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
13	Allium sativum L.	Garlic	Alliaceae	-	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
14	Derris scandens (Roxb.) Benth.	Nalla teega	Fabaceae	Leaf, rhizome	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
15	Zingiber officinale Rose.	Ginger	Zingiberaceae	-	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
16	Curcuma longa L.	Turmeric	Zingiberaceae	-	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
17	Gloriosa superba L.	-	Amarillidaceae	Tubers	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
18	Allium cepa L.	Onion	Alliaceae	-	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
19	Dillenia pentagyna Roxb.	Kalinga	Dilleniaceae	Stem bark	Visakhapatnam and Vizianagarm Districts (A.P.)	Lakshmi Narayana <i>et al,</i> 2015	Int. J. of Pure & Applied Bioscience
20	Pergularia daemia (Forsk.) Chiov.	Guritaku	Asclepiadaceae	Leaf & tuber	Visakhapatnam and Vizianagarm	Lakshmi Narayana <i>et al,</i>	Int. J. of Pure & Applied Bioscience

Table-1: Enumeration of documented ethno-veterinary medicinal plants used against Anthrax in India:

					Districts (A.P.)	2015	
21	Azima tetracantha	Uppina	Salvadoraceae	Leaves	Mallenahalli of	Raveesha &	Journal of
	Lam.	mullu			Chikmagalur	Sudhama, 2015	Medicinal Plant
					Taluk (K.A.)		Studies
22	Albizia lebbeck (L.)	East	Mimosaceae	Bark	Mallenahalli of	Raveesha &	Journal of Modicinal Plant
	wind.	Walnut			Taluk (K.A.)	Suunania, 2015	Studies
23	Piper nigrum L.	Pepper	Piperaceae	Leaves	Mallenahalli of	Raveesha &	Journal of
					Chikmagalur	Sudhama, 2015	Medicinal Plant
24	Allium cativum I	Carlic	Alliacoao	Bulblotc	Taluka (K.A.)	Rayoocha &	Studies Journal of
24	Allium sutivum L.	Garric	Amaceae	Duiblets	Chikmagalur	Sudhama, 2015	Medicinal Plant
					Taluka (K.A.)		Studies
25	Ziziphus xylopyrus	-	Rhamnaceae	Root	Mulugu Revenue	Medisetti, 2018	European Journal
	(Retz) Wild				Div. Dist. Bhupal-		of Biomedical and
					pairy (1.5.)		Sciences
26	Terminalia chebula	Harra	Combretaceae	Fruit	Chitrakoot Dist.	Gautam and	Int. J. of Pharm. &
	Roxb.				Satna (M.P.)	Ricchariya 2015	Life Sciences
27	Atalantia malaharica Tanaka	Konda	Rutaceae	Stem	Lastern Ghats of	Reddy	Indian Journal of
		mma		bark	(A.P.)	ct ul, 2000	Knowledge
28	Piper nigrum L.	Pepper	Piperaceae	-	Eastern Ghats of	Reddy	Indian Journal of
					Andhra Pradesh	<i>et al,</i> 2006	Traditional
29	Allium sativum I	Garlic	Alliaceae	-	(A.P.) Fastern Ghats of	Reddy	Knowledge
25	ninum sutivum E.	Guine	7 indeede		Andhra Pradesh	et al, 2006	Traditional
					(A.P.)		Knowledge
30	Dillenia pentagyna	Kalinga,	Dilleniaceae	Stem	Eastern Ghats of	Reddy	Indian Journal of
	ROXD.	Revadi		bark	(A.P.)	et al, 2006	Traditional Knowledge
31	Eulophia	Segadom	Orchidaceae	Pseudo-	Eastern Ghats of	Reddy	Indian Journal of
	epidendraea	ma		bulbs	Andhra Pradesh	<i>et al,</i> 2006	Traditional
22	Fischer	gaddalu	Anacardiacaaa	Stom	(A.P.)	Doddy	Knowledge
52	coromandelica	Dumpidi	Anacarulaceae	bark	Andhra Pradesh	et al. 2006	Traditional
	(Houtt.) Merr.				(A.P.)	,	Knowledge
33	Ziziphus xylopyrus	Gotti	Rhamnaceae	Roots	Eastern Ghats of	Reddy	Indian Journal of
	(Retz) Wild				Andhra Pradesh	et al, 2006	I raditional Knowledge
34	Calotropis	Jillaedu	Asclepiadaceae	Stem	Eastern Ghats of	Reddy et al,	Indian Journal of
	gigantea (Linn.)			bark	Andhra Pradesh	2006	Traditional
	R.Br.				(A.P.)		Knowledge
35	Erythroxylum monogynum Boxh	Devadaari	Erythroxylacea	-	Eastern Ghats of Andhra Pradesh	Reddy et al. 2006	Indian Journal of
	monogynum noxo.				(A.P.)	ct ui, 2000	Knowledge
36	Pterocarpus	Yegisha	Fabaceae	-	Eastern Ghats of	Reddy	Indian Journal of
	<i>marsupium</i> Roxb.				Andhra Pradesh	et al, 2006	Traditional
37	Capsicum annum	Chillies	Solanaceae	-	Eastern Ghats of	Reddy	Indian Journal of
	L.				Andhra Pradesh	et al, 2006	Traditional
				-	(A.P.)		Knowledge
38	Abrus precatorius	-	Fabaceae	Stem	Perambalur	Devendrakuma	Research in Plant
	L.			Daik	Rayala Seema	2012, Venkata	European Journal
					Regions (A.P.)	Rami Reddy K	of Environmental
20	Anneling di i li		D.AU	Char	Develo C	<i>et al,</i> 2016	Ecology
39	Azaairachta indica A luss	-	iviellaceae	Stem bark	Regions (A P)	venkata Rami Reddy K et al	European Journal
				201 K		2016	Ecology
40	Dendrocalamus	-	Poaceae	Leaves	Rayala Seema	Venkata Rami	European Journal

	strictus Roxb.				Regions (A.P.)	Reddy K <i>et al,</i> 2016	of Environmental Ecology
41	Dillenia pentagyna	-	Dilleniaceae	Leaves	Rayala Seema	Venkata Rami	European Journal
	Roxh				Regions (A P)	Reddy K et al	of Environmental
	NOXD.				110g10113 (7.11.)	2016	Ecology
42	Gloriosa superba L.	-	Amarillidaceae	Tuber	Rayala Seema	Venkata Rami	European Journal
					Regions (A.P.)	Reddy K et al,	of Environmental
					0	2016	Ecology
43	Lannea	-	Anacardiaceae	Stem	Ravala Seema	Venkata Rami	Furopean Journal
	coromandelica			bark	Regions (A P)	Reddy K et al	of Environmental
	Murr			bark		2016	Ecology
			N 4 - viu	1	Davida Carrier	2010	Ecology
44	ivioringa oleifera	-	woringaceae	Leaves	Rayala Seema	venkata Rami	European Journal
	Lam.				Regions (A.P.)	Reddy K <i>et al,</i>	of Environmental
						2016	Ecology
45	Pergularia daemia	-	Asclepiadaceae	Leaves	Rayala Seema	Venkata Rami	European Journal
	(Forsk.)				Regions (A.P.)	Reddy K et al,	of Environmental
						2016	Ecology
46	Phyllanthus	-	Euphorbiaceae	Fruits	Ravala Seema	Venkata Rami	European Journal
_	emblica L.				Regions (A.P.)	Reddy K et al.	of Environmental
						2016	Ecology
47	Terminalia hellirica	_	Combretaceae	Stom	Ravala Seema	Venkata Rami	European Journal
47	(Coortro)	-	Compretaceae	bork	Rayala Seellia		of Environmental
	(Gaerth.)			Dark	Regions (A.P.)	Reduy K et ul,	
						2016	Ecology
48	Terminalia chebula	-	Combretaceae	Fruits	Rayala Seema	Venkata Rami	European Journal
	Retz.				Regions (A.P.)	Reddy K <i>et al,</i>	of Environmental
						2016	Ecology
49	Tylophora indica	-	Asclepiadaceae	Whole	Rayala Seema	Venkata Rami	European Journal
	(Burm. f.)			plant	Regions (A.P.)	Reddy K et al,	of Environmental
						2016	Ecology
50	Ziziphus xylopyras	-	Rhamnaceae	Root	Rayala Seema	Venkata Rami	European Journal
					, Regions (A.P.)	Reddy K <i>et al.</i>	of Environmental
						2016	Ecology
51	Atlantia	Konda	Rutaceae	Stem	Tribal regions of	Pragada &	Bangladesh I
51	malaharica (L)	nimma	nataccac	bark		Narsimha rao	Plant Taxon
	Corros	Tiirrina		Dark	A.r.	2012	
52		Demmen	Dimension		Tuibal unations of	ZUIZ	Developen I
52	Piper nigrum L.	Pepper	Piperaceae	-		Pragaŭa &	Bangiauesn J.
					A.P.	Narsimna rao,	Plant Laxon.
						2012	
53	Allium sativum L.	Garlic	Alliaceae	-	Tribal regions of	Pragada &	Bangladesh J.
					A.P.	Narsimha rao,	Plant Taxon.
						2012	
54	Dillenia pentagyna	Kalinga	Dilleniaceae	Stem	Tribal regions of	Pragada &	Bangladesh J.
	Roxb.			bark	A.P.	Narsimha rao,	Plant Taxon.
						2012	
55	Lannea	Gumpena	Anacardiaceae	Stem	Tribal regions of	Pragada &	Bangladesh J.
	coromandelica			bark	A.P.	Narsimha rao.	Plant Taxon.
	Murr					2012	
56	Zizinhus vylonyras	Gotti	Rhamnaceae	Root	Tribal regions of	Pragada &	Bangladesh I
50		Gotti	Mannaceae	NOOL		Narsimba rao	Dangiauesii J.
	L.				A.P.		
	Dut a	Dalas	F - b	1	Manually a statutat	2012 Busisla	lat I of Colours
57	Buted	Palas	Fabaceae	Leaves,	wardna district	Pranjale &	Int. J. of Science
	monosperma			flowers	(M.H.)	Dube, 2016	and Research
	(Lamk.)						
58	Cassia fistula L.	Sonuru	Fabaceae	Seeds,	East khasi hill of	Bhat et. al.	Heliyon
		gaach		flowers	Meghalaya	2023	
59	Phyllanthus	Soh	Euphorbiaceae	Flower,	East khasi hill of	Bhat et. al.	Heliyon
	emblica L.	maleng		leaf	Meghalaya	2023	
60	Tinospora	Seenthil	Menispermae	Leaves	Perambalur	Devendrakuma	Research in Plant
	cordifolia (L.)				district (T.N.)	r & Anbazhagan	Biology
1	Merr.					2012	

DISCUSSION

The use of ethno-veterinary medicinal plants in combating anthrax in livestock is a significant aspect of traditional veterinary practices in India. The distribution of these plants across seven states provides valuable insights into regional variations in traditional knowledge and practices.

Taxonomic Contributions

A total of 37 species spanning 34 genera and 25 families were recorded across the surveyed states (Table-2, Fig. 2). Among these, Fabaceae emerges as the most significant family, contributing 29% of the plants used against anthrax. This dominance highlights the potential of Fabaceae species in providing bioactive compounds for disease management. Families like Solanaceae and Asclepiadaceae also contribute substantially (18%), followed by Alliaceae, Combretaceae, and Euphorbiaceae, each contributing 12% (Table-3, Fig. 3). The diversity of plant families reflects the broad spectrum of plants utilized and the adaptability of traditional systems to available flora.

Regional Diversity in Ethno-veterinary Knowledge

The findings reveal that Andhra Pradesh holds the richest repository of ethno-veterinary medicinal plants against anthrax, with 27 species documented. This is significantly higher than Tamil Nadu, which has six species and Karnataka and Meghalaya, where only four species each were recorded. It is followed by the Madhya Pradesh which has record of three species. The states of Maharashtra and Telangana stand out for their minimal contributions, with only one plant species recorded in each state. (Table-4, Fig. 4) This disparity underscores the need for more extensive surveys in regions with fewer documented species to capture potentially untapped traditional knowledge.

Anthrax and the Need for Cost-Effective Solutions

Anthrax, a critical zoonotic disease, possess severe threats to livestock health and, consequently, rural livelihoods. The use of ethno-veterinary medicinal plants offers a cost-effective or no-cost alternative for farmers, especially in resource-limited settings. These plants are often locally available and culturally accepted, making them a practical solution for tribal and rural communities. Moreover, their application reduces dependency on expensive pharmaceutical treatments, aligning with the socio-economic conditions of marginalized populations.

Gaps and Future Prospects

The study highlights significant gaps in the documentation of ethno-veterinary plants in states like Maharashtra and Telangana, where only one plant was recorded against anthrax. This suggests a potential underutilization or lack of documentation of traditional knowledge in these regions. Future field surveys should prioritize these underrepresented states and others to uncover and preserve undocumented plant species and practices. Comprehensive surveys would not only enrich the ethnobotanical database but also provide a robust foundation for pharmacological validation and conservation efforts.

Implications for Policy and Livelihood Development

The findings have critical implications for animal welfare, disease control, and rural livelihood Policymakers development. can leverage this traditional knowledge to promote sustainable livestock healthcare practices. Integrating ethnoveterinary medicine into formal veterinary systems can enhance accessibility and affordability for rural the farmers. Additionally, documentation and conservation of ethno-veterinary plants can contribute to biodiversity preservation and the safeguarding of indigenous knowledge systems.

Table-2: Spectrum of taxa of ethno-veterinary medicinal plantsagainst anthrax

Sr. No.	Category	Numbers
1	Genus	34
2	Species	37
3	Families	25

Fig. 2: Spectrum of taxa of ethno-veterinary medicinal plants against anthrax

Sr. No.	Family	Numbers
1	Fabaceae	5
2	Asclepiadaceae	3
3	Solanaceae	3
4	Alliaceae	2
5	Combretaceae	2
6	Euphorbiaceae	2

Table-3: Plant families used in ethno-veterinary medicine for treating anthrax

Fig. 3: Plant families used in ethno-veterinary medicine for treating anthrax

Table 4: Geographical distribution of ethno-veterinar	v medicinal plants used	against anthrax across	Indian states
Tuble 4. Ocographical distribution of clinic veterinar	y meaning plants asea	against antinax across	maian states

States	Number of EVM Plants used against anthrax
Andhra Pradesh	27
Tamil Nadu	6
Karnataka	4
Meghalaya	4
Madhya Pradesh	3
Maharashtra	1
Telangana State	1

Fig. 4: Geographical distribution of ethno-veterinary medicinal plants used against anthrax across Indian states

CONCLUSION

The documentation of ethno-veterinary medicinal plants against anthrax highlights the rich traditional knowledge present only in seven states of India. This limited geographic representation suggests that significant traditional knowledge remains undocumented or underexplored in many other states of India. States with rich biodiversity and strong traditional knowledge systems, such as Arunachal Pradesh, Kerala, and Rajasthan, are yet to contribute to the documented database for anthrax treatments. The uneven documentation underscores the need for further field surveys and research across the remaining states to capture the full spectrum of India's ethno-veterinary practices. Expanding this knowledge base and integrating it with modern veterinary practices can play a pivotal role in addressing livestock health issues, ensuring rural sustainability, and preserving cultural heritage.

Conflict of Interest: The authors declare no conflict of interest in relation to this research.

Acknowledgement

We express our heartfelt gratitude to the traditional healers, tribal communities, and farmers of India for preserving and practicing their ethno-veterinary knowledge of medicinal plants.

Data Availability Statement: Not applicable.

Correspondence and requests for materials should be addressed to **Deshmukh Muzammil M**

Peer review information

IJLSCI thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at <u>https://www.ijlsci.in/reprints</u>

REFERENCES

- Anonymous (2008) *Anthrax in Humans and Animals* 4th ed. WHO cataloguing-in-publication data, Press, World Health Organization, Geneva, Switzerland
- Bhat NA, Jeri L, Karmakar D, Mipun P, Bharali P, Sheikh N, Nongkynrih CJ, Kumar Y (2023) Ethnoveterinary practices of medicinal plants used for the treatment of different cattle diseases: A case study in East Khasi Hill district of Meghalaya, North East India. *Heliyon.* 9(7): e18214.
- Deshmukh OS and VU Pochhi (2017) Plants used in Ethnoveterinary medicines by Tribal Peoples in Betul District, Madhya Pradesh, India. *International Journal of Applied Research*. Vol. 3 (Special issue 3, part B): 34-39.

- Ganesan S, M Chandhirasekaran and A Selvaraj (2008) Ethnoveterinary healthcare practices in southern districts of Tamil Nadu. *Indian Journal of Traditional Knowledge*. Vol. 7(2): 347-354
- Gautam P and Ricchariya GP (2015) Ethnoveterinary medicinal plants used by tribal's and rural communities of Chitrakoot, Distt. Satna (M.P.). *International Journal of Pharmacy & Life Sciences*. 6 (4): 4427-4430.
- Lakshmi NV and GM Narasimha Rao (2015) Ethnoveterinary practices and phytochemical analysis of some selected medicinal plants from North Coastal Andhra Pradesh, India. *India Journal of Applied Research*. Vol. 5 (9): 455-457.
- Medisetti N (2018) Ethnoveterinary practices in Mulugu revenue division of Jayashankar Bhupalpally District, Telangana. *European Journal of Biomedical and Pharmaceutical Sciences*. Vol. 5 (2): 811-818.
- Pragada MR and GM Narsimha Rao (2012) Ethnoveterinary medicinal practices in tribal regions of Andhra Pradesh, India. *Bangladesh Journal of Plant Taxonomy*. 19 (1): 7-16.
- Pranjale A and Dube KG (2016) Ethno-veterinary Traditional Knowledege of some plants used in Wardha district (Maharashtra). *International Journal of Science and Research*. Vol. 5 (5): 1279-1283.
- Raveesha HR and VN Sudhama (2015) Ethnoveterinary practices in Mallenahalli of Chikmagalur Taluka, Karnataka. *Journal of Medicinal Plants Studies*. 3 (1): 37-41.
- Reddy KN, GV Subbarajau, CS Reddy and VS Raju (2006) Ethnoveterinary medicine for treating livestock in eastern ghats of Andhra Pradesh. *Indian Journal of Traditional Knowledge*. Vol. 5(3): 368-372.
- Sikarwar, RLS (1996) Ethno-veterinary herbal medicines in Morena district of Madhya Pradesh, India. Pp. 194-196 in *Ethnobiology in Human Welfare*. Edited by S.K. Jain. Deep Publications, New Delhi.
- Venkata Rami Reddy K, M Nagalakshmi Devamma and P Prayaga Murty (2016) Ethnoveterinary Medicinal Practices in Rayala Seema Regions of Andhra Pradesh, India. *European Journal of Environmental Ecology*. 3 (1): 7-20.

© The Author(s) 2024

Publisher's Note

IJLSCI remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.