RESEARCH ARTICLE

AN OVERVIEW OF AEROBIOLOGY OVER GROUNDNUT CROP AT PATAN (M.S)

Shinde Manjusha¹ and Mahajan Minakshi²

¹Balasaheb Desai College, Patan. Dist-Satara, Maharashtra, India.

²Fergusson College, Pune

ABSTRACT

An aerobiological investigations have been carried out over groundnut crop field for two consecutive seasons from (July2011 to November 2011) kharif and from (January2012 to May 2012) summer, using Tilak air sampler. Comparative study of these two seasons revealed abundant total airspora during kharif (rainy) (447594) as compared to summer season (178430) comprising 95 spore types which exhibited monthly variation during both the seasons. Observations of Kharif season revealed that the total spore load was maximum during October 2011(248122) as compared to the total of remaining three months (165396) which may be due to heavy rain fall during October 2011, other congenial conditions and incidence of 24 types of ascospores released due to rains. Thus ascospores acted as bio indicator of heavy rainfall.Highest spore count has been recorded on 13 th October 2011 (88270) which was due to 655,2mm rainfall, 250C temperature and 65% RH on preceding day 12th October 2011 and 25 mm rainfall on same day, which was responsible for release of ascospores. Thus environmental parameters have played significant role on the spore load; this was coincided with maximum incidence of foliar diseases like Tikka disease and Rust of Groundnut and higher percentage contribution of pathogens of these diseases. Deuteromycotina has been found to be dominant class (58.19%) followed by Ascomycotina(18.81%), Basidiomycotina (10.89%), other types (9.19%), Phycomycotina (2.26%) and Myxomycotina (0.62%). Dominant spore types in descending order have been found to be Cladosporium (15.53%), Aspergillus (9.19%) and Nigrospora (6.23%) and least in occurrence have been found to be *Ceratosporium* (0.004%) and others in between. These investigations may be helpful in laying down some basic principles required for disease forecasting system of important diseases of groundnut to save crop losses and yield of crops due to diseases at Patan.

Keywords : Aerobiology, Groundnut, Environmental parameters, Diseases, Patan

INTRODUCTION

Patan is located in the vicinity of Koyana Dam and is earthquake prone area situated at 17022'30"North latitude and 73054'10" Longitude and above 2200-feet from main sea level having heavy rainfall around 3000 mm per annum. Gregory (1952) proposed the term Aerospora to describe airborne pollen grains and fungal spores. Agarwal (1969), elaborated significant role of fungal spores on plant diseases. Vegetation as well as biogeographical zone determines the fungal spores of respective area. The concentration of fungal

Corresponding Author

Email: <u>sman 2050@yahoo.com</u> © 2013| Published by IJLSCI. All rights reserved. spores is determined by time, day, weather parameters and seasons.Aerobiological studies have been selected due to its lack in this region, for qualitative and quantitative estimation of general and pathogenic airspora over an oil seed and fodder cash crop like groundnut as extramural investigation have been carried out from 11th July 2011 to 18 th November 2011 and summer season from 1 st January 2012 to 18 th May2012 over groundnut crop fields. (Table.1)

Groundnut (*Arachis hypogaea* L.) belongs to family Fabaceae is an important oil seed cash crop in tropical and subtropical countries of the world. India is major country in groundnut production 4.19 million hector of land under groundnut production in India. Gujarat, Rajasthan, Maharashtra are major groundnut producing states in India. Groundnut crop is affected

by some airborne fungal diseases. The present investigation deals with study of concentration of aerospora over groundnut field at Patan.

Many scientists studied diseases of groundnut thoroughly. (Chahal et al.1971), Shanta.P, (1960), Quazi, ((1985), Sulaiman and Agashe (1965), Woodroof (1933), Mahajan and Pande (2002), Kadam.et al (2008) Mali and Gaikwad (2011) and focused aerobiological investigations over groundnut crop and its diseases. Aerospora of groundnut with various parameters has been studied by many Kalkar and Patil (1997), Mallaiah (1989), Aher et al. (2002), Arsule and Pande (2011), Jadhav et al (2010).

Crop is affected by many pathogens which are mainly uneven in distribution irrespective of vegetation cover and climatic conditions. The Tikka disease and Rust disease are caused by *Cercospora arachidicola* (Hori) and *Cercospora personatum* (Berk and Curt) *Deighton*, and *Puccinia arachidis speg* respectively. Rust disease was first reported by Chahel and Chahan (1971). The pathogen attacks the leaves of crop, other important but less frequent diseases of groundnut are leaf spot caused by *Leptosphaerulina crassica* (sechet) Jackson and bell, *Alternaria alternata* (FY) *Keissler* and *Myrothesium* rode ex. The disease is spread only through the air by outbreak of epiphytotics.

MATERIAL AND METHODS

Aerobiological investigation has been carried out over groundnut (variety S.B.11) field at two different sites at Kaloli and at Meshtewadi of Patan. Sampling was carried by using continuous volumetric Tilak Air Sampler, installed in groundnut field at 1.5 meter height from Ground at Patan. Slides have been prepared and scanned. Identification was done by using authentic literature, photographs, reference slides etc. Daily meteorological data has been maintained.

RESULTS & DISCUSSION:

During both the seasons, total 95 bio components including various types of fungal spores of saprophytic fungi, pathogenic fungi, and other biocomponents like pollen grains, plant parts, fungal hyphae, algal filaments, mites, protozoan cyst, insect parts and other unidentified fungal spores were observed. Two types from Myxomycotina, four types from Phycomycotina, 25 types from Ascomycotina, 5 types from Basidiomycotina, and 51 spore types Deuteromycotina types while 8 different types of biocomponents have been recorded over groundnut crop field. Table .3. Class wise percentage contribution during both seasons revealed the group Deuteromycotina has been found to be dominant with 54.80% and 66.70%. Followed by Ascomycotina with 23.40% and 7.29%. Basidiomycotina with 11.34% and 9.76%, other types 7.48% and 13.49%. Phycomycotina 2.28% and 2.21% and Myxomycotina 0.60% and 0.52% spore contribution to the total air spora of two seasons have been encountered respectively.

Percentage contribution of airspora was more during Kharif (71.49%) as compared to summer (28.50%) as there was no single spore free day, during both the seasons. Maximum spore load has been encountered during October 2011 as Compare to other months. According to seasonal variation 36.95% spore load was recovered in south west monsoon that is (July to August 2011)and 74.04% spore load was observed in retreating monsoon (September to November 2011).

Table I Scasonwise datation of groundhat crop and sampling	Table 1-seasonwise	duration of	groundnut cro	and sampling
--	--------------------	-------------	---------------	--------------

Sr. No	Season	Variety	Date of Sampling	Sowing Date	Harvesting Date	Date Sampling Stopped	Days	Place
1	Kharif	S.B.11	11 July 2011	18 July2011	10 Nov 2011	18 Nov 2011	128	Kaloli
2	Summer	S.B.11	1 Jan 2012	8Jan 2012	20 May 2012	28 May 2012	118	Meahtewadi

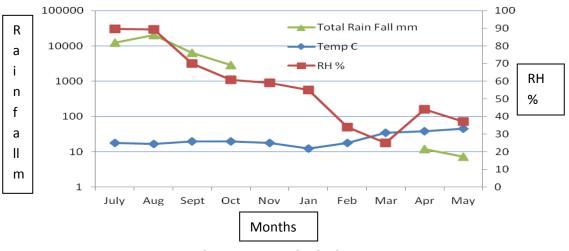


Fig. 1: Meteorological Data

Table 2 : Monthly concentration of airborne pathogenic spores over ground nut crop field during 1^{st} and 2^{nd} season in relation to meteorological parameters

Grand	Parameters											
Spore	Ave.	July	Aug	Sept	Oct	Nov	Jan	Feb	Mar	Apr	May	
	Temp ⁰ c	25.14	24.6	26	26	25.13	22	25	30.8	31.8	33.12	
	RH %	89.54%	89.48%	70%	60,8%	59.13%	55%	34%	25%	44.11%	37.2%	
	Total rainfall	12218 mm	20412 mm	6350 mm	2872 mm	-	-	-	-	12 mm	7.2 mm	
Cercospora	-	630	2282	4676	21882	616	98	280	336	182	616	
Alternaria	-	784	896	1288	8218	1764	1652	3150	1120	252	560	
Puccinia	-	2128	2072	2268	4872	1610	2324	2756	518	210	-	

During summer season 57.20% spores have been encountered in cold season (Jan and Feb) and rest 42.79% in hot months of summer (Mar to May) 2012).(Graph 1).

Some spores have been found to occur constantly during both the seasons include *Cladosporium*, *Alternaria*, *Aspergillus*, *Nigrospora*, *Periconia*, *Curvularia*. Among all the spore types, Cladosporium, (12.13%and 24.04%), followed by *Aspergillus* (8.52%and 10.86%). (table 3), *Nigrospora*, *Alternaria* found abundant while *Drechslera* was dominant in summer season. Our finding correlates with A Janaki Bai and Subba Reddi (1981) there is high incidence of airspora in this region because of congenial environmental conditions like rainfall, Temperature, relative humidity and abundance of substratum from thick forest litter around. Observation of *Pringsheimia* revealed interesting findings during kharif season its percentage contribution has been 7.75% (34692) only, while during summer crop season it is 0.18% (336) only. This indicates that it belongs to wet airspora group hence found in prominently more percentage during kharif season having congenial conditions for *Pringsheimia* (average temp.25.20c, average RH-74%,Total rain fall 4441mm).During summer season due to unfavourable condition (31 mm rainfall, 33.10c and RH 44%).(Table.2).

Table 3: Reaveals season wise comparative concentration and percentage contribution of each spore groupand spore type during two kharif season over groundnut crop fields from 11 July 2011 toNov 2011 and 1January 2012 to 18 May 2012

Sr. No.	ary 2012 to 18 May Name of Spore	Kaloli	%contribution/m3	Meshtewadi	%contribution/m3	Total	%
	Myxomycetes						
1	Physarum	1526	0.3409	770	0.431542	2296	0.36676
2	Stemonitis	1470	0.3284	168	0.094155	1638	0.26165
			0		0	0	0
	Total	2996	0.6694	938	0.525696	3934	0.62841
	phycomycetes						
1	Albugo	3402	0.7601	1918	1.074931	5320	0.84981
2	Circinella	966	0.2158	406	0.22754	1372	0.21916
3	Cunnighemella	4172	0.9321	630	0.35308	4802	0.76706
4	Sclerospora	1708	0.3816	994	0.557081	2702	0.43161
	-					0	0
	Total	10248	2.2896	3948	2.212632	14196	2.26764
	Ascomycetes						
1	Ascospores	1498	0.3347	1302	0.729698	2800	0.44727
2	Bitrimonospora	1848	0.4129	1400	0.784621	3248	0.51883
3	Calospora	630	0.1408	476	0.266771	1106	0.17667
4	Cheatomium	2702	0.6037	364	0.204002	3066	0.48976
5	Claviceps	4144	0.9258	56	0.031385	4200	0.6709
6	Cucurbit aria	42	0.0094	588	0.329541	630	0.10064
7	Dydimospheria	4410	0.9853	1190	0.666928	5600	0.89453
8	Hypoxylon	3164	0.7069	574	0.321695	3738	0.5971
9	Hysterium	7042	1.5733	826	0.462927	7868	1.25682
10	Leptosphaeria	21056	4.7043	1624	0.910161	22680	3.62286
11	Lophiostoma	168	0.0375	14	0.007846	182	0.02907
12	Masarina	0	0	112	0.06277	112	0.01789
13	Melanospora	420	0.0938	56	0.031385	476	0.07604
14	Metasphaeria	5712	1.2762	252	0.141232	5964	0.95268
15	Otthia	84	0.0188	126	0.070616	210	0.03355
16	Parodiella	434	0.097	42	0.023539	476	0.07604
17	Passaraniella	336	0.0751	70	0.039231	406	0.06485
18	Pleospora	10430	2.3302	2632	1.475088	13062	2.0865
19	Pringsheimia	34692	7.7508	336	0.188309	35028	5.59531
20	Rosellina	518	0.1157	182	0.102001	700	0.11182
21	Sordaria	4186	0.9352	28	0.015692	4214	0.67314
22	Sporormia	420	0.0938	84	0.047077	504	0.08051
23	Teichospora	476	0.1063	490	0.274617	966	0.15431
24	Valsaria	196	0.0438	196	0.109847	392	0.06262
25	xylaria	168	0.0375	0	0	168	0.02684
			0		0	0	0
	Total	104776	23.409	13020	7.296979	117796	18.8165

Table 3: Continued

Sr. No.	Name of Spore	Kaloli	%contribution/m3	Meshtewadi	%contribution/m3	Total	%
	Basidiomycetes						
1	Basidiospores colour	6146	1.3731	4242	2.377403	10388	1.65936
2	Basidiospores hyaline	14588	3.2592	2842	1.592781	17430	2.78424
3	Ganoderma	2184	0.4879	112	0.06277	2296	0.36676
4	Rust spore	12950	2.8932	5628	3.154178	18578	2.96762
5	Smut spore	14896	3.328	4606	2.581404	19502	3.11522
6	Urodospores	0	0	0	0	0	0
			0		0	0	0
	Total	50764	11.342	17430	9.768537	68194	10.8932
	Deuteromyctes						
1	Alternaria	12950	2.8932	6734	3.774029	19684	3.14429
2	Aspergillus	38164	8.5265	19390	10.86701	57554	9.19358
3	Beltrania	336	0.0751	420	0.235386	756	0.12076
4	Beltraniella	224	0.05	126	0.070616	350	0.05591
5	Bipolaris	84	0.0188	0	0	84	0.01342
6	Bispora	3780	0.8445	2352	1.318164	6132	0.97952
7	Botriodiplodia	28	0.0063	70	0.039231	98	0.01565
8	Ceratosporium	28	0.0063	0	0	28	0.00447
9	Cercospora	30086	6.7217	1512	0.847391	31598	5.04741
10	Cladosporium	54334	12.139	42910	24.04865	97244	15.5336
11	Clasterosporium	238	0.0532	126	0.070616	364	0.05814
12	Cordana	686	0.1533	686	0.384464	1372	0.21916
13	Coryneospora	1638	0.366	350	0.196155	1988	0.31756
14	Curvularia	7742	1.7297	3598	2.016477	11340	1.81143
15	Darluka	448	0.1001	448	0.251079	896	0.14313
16	Deigtonella	126	0.0282	182	0.102001	308	0.0492
17	Diplocladiella	42	0.0094	0	0	42	0.00671
18	Diplodia	350	0.0782	476	0.266771	826	0.13194
19	Drechslera	1120	0.2502	1274	0.714005	2394	0.38241
20	Epicoccum	7350	1.6421	1652	0.925853	9002	1.43796
21	Exosporoium	1218	0.2721	0	0	1218	0.19456
22	Fusariella	1442	0.3222	252	0.141232	1694	0.2706
23	Fusarium	2436	0.5442	168	0.094155	2604	0.41596
24	Gilmanigella	0	0	126	0.070616	126	0.02013
25	Haplosporella	462	0.1032	294	0.16477	756	0.12076
26	Helicomyces	182	0.0407	294	0.16477	476	0.07604
27	Helminthosporium	2674	0.5974	1232	0.690467	3906	0.62394
28	Heterosporium	672	0.1501	392	0.219694	1064	0.16996
29	Hirdunaria	126	0.0282	28	0.015692	154	0.0246
30	Lacellina	3052	0.6819	518	0.29031	3570	0.57027

Table 3 : Continued

Sr. No.	Name of Spore	Kaloli	%contribution/m3	Meshtewadi	%contribution/m3	Total	%
31	Mennoniella	854	0.1908	0	0	854	0.13642
32	Nigrospora	30856	6.8937	8176	4.582189	39032	6.2349
33	Odium	322	0.0719	686	0.384464	1008	0.16102
34	Penicillium	1330	0.2971	4844	2.71479	6174	0.98622
35	Periconia	8162	1.8235	7280	4.080031	15442	2.46668
36	Pestilotia	1540	0.3441	686	0.384464	2226	0.35558
37	Pithomyces	11256	2.5148	1820	1.020008	13076	2.08874
38	Pseudotorula	2338	0.5223	1386	0.776775	3724	0.59487
39	Pyricularia	1036	0.2315	0	0	1036	0.16549
40	Sirodesmium	112	0.025	294	0.16477	406	0.06485
41	Spegazzinia	1050	0.2346	1260	0.706159	2310	0.369
42	Spermospora	2114	0.4723	0	0	2114	0.33769
43	Spicaria	434	0.097	70	0.039231	504	0.08051
44	Sporidesmium	84	0.0188	238	0.133386	322	0.05144
45	Stemophillium	56	0.0125	84	0.047077	140	0.02236
46	Stigmina	784	0.1752	168	0.094155	952	0.15207
47	Tetracoccosporium	630	0.1408	1302	0.729698	1932	0.30861
48	Tetraploea	462	0.1032	826	0.462927	1288	0.20574
49	Torula	9030	2.0175	3290	1.84386	12320	1.96798
50	Tricoconis	280	0.0626	462	0.258925	742	0.11853
51	Tryblidium	574	0.1282	532	0.298156	1106	0.17667
	-		0		0	0	0
	Total	245322	54.809	119014	66.70067	364336	58.1984
	Other type						
1	Fungal hypae	15414	3.4437	4788	2.683405	20202	3.22703
2	Insect parts	4200	0.9384	4676	2.620636	8876	1.41784
3	Pollen grain	1638	0.366	5040	2.824637	6678	1.06673
4	Protozoan cyst	1806	0.4035	1036	0.58062	2842	0.45398
5	Algal filaments	952	0.2127	532	0.298156	1484	0.23705
6	Mites	84	0.0188	28	0.015692	112	0.01789
7	Plant part	6958	1.5545	5012	2.808945	11970	1.91207
8	unidentified	2436	0.5442	2968	1.663397	5404	0.86323
			0		0	0	0
	Total	33488	7.4818	24080	13.49549	57568	9.19581
			400	480400	400	(0(00)	100
	Grand total	447594	100	178430	100	626024	100

CONCLUSION:

It may be concluded that kharif airspora and pathogenic airspora has been found to be abundant may be because of favourable meteorological parameters like heavy rainfall, high humidity and moderate temperature while quite less during summer crop season due to hot condition with high temp., less humidity, accompanied by minimum scanty total rainfall. In kharif season, the Tikka disease caused by *Cercospora arachidicola* and rust by *Puccinia arachidis* were prominent whereas the traces of diseases were not encountered during summer season of groundnut field.

Thus meteorological parameters have been found to play detrimental role in incidence of airspora and due to heavy rainfall wet airspora has been found abundantly as compare to dry air spora apart from constant air spora.

REFERENCES:

- 1) Agarwal M. K. (1969), Studies on the allergenic fungal spores of Dehli, India, Metropolitan area, *J.Allergy*, 44:193-203.
- 2) Aher S.K, S.V.Thite and B. N. Pande (2002) Fungal airspora of a groundnut field *Eco. Env. & Cons* 8(3) PP 283-288.
- 3) A Janaki Bai and Subba Reddi (1981) The fungus airspora of Visakhapatnam. *Proc. Indian nat. Acad* B47 No 5 pp .731-747.

- 4) Arsule C.S. and Pande. B.N. (2011) fungal airspora over the groundnut fields at Newasa. *Bionand Fronier*, vol. 4 (2) July- Dec 2011.
- 5) Gregory (1952) fungal Spores. *Trans. Brit. Mycol. Soc.*, 35: 1 18.
- 6) Kadam R.M. N. J. M. Reedy, B. S. Jadhav and V.S. Nagpur (2008) Aerobiological approach to leaf spot and rust disease of groundnut (Arachis hypogaea L.) *Internat. Jr of Pit. Protection. Vol* 1 No 2.63-65.
- 7) Kalkar S.A. and G.V. Patil (1997) fungal airspora over the groundnut fields at Nagpur Aerobiology Proceedings of the 5th international conf. Bangalore 1994 (Ed SN Agashe) 249- 254.
- 8) Mahajan .M.C. & B. N. Pande (2002) Atmospheric Incidence of Rust Spores over groundnut fields *Eco. Env. & Cons* 8 (3) PP 257—259.
- 9) Mali N.S. and Gaikwad Y. B. (2011) Studies in pathogenic airspora and epidemiology of groundnut crop at Solapur during two Kharif seasons. *Bioscience Discovery* Vol 02, No 1, Jan. 2011.
- 10) Mallaih K.V. (1989) Aerobiology of Cercospora species pathogenic to crop plants. Recent Res. *Eco. Env. & poll* 3 67-78.
- 11) Quazi. S.M. (1985) Aerobiological approach to some crop diseases. PhD Thesis .Marathwada University Aurangabad.
- Sreemulu T. (1967) Aerobiology in India J. Science Indus. Res 26:474-480.

© 2013| Published by IJLSCI

Cite this article as: Shinde Manjusha and Mahajan Minakshi (2013) An overview of aerobiology over groundnut crop at Patan (m.s). *Int. J. of Life Sciences,* Special Issue A (1): 40- 46.

