
 

 

 
 
 

 

 
 

 

International Journal of 

Life Sciences 
International Peer Reviewed Open Access Refereed Journal 

 
Int. J. of Life Sciences, 2024; 12 (3): 291-301 

ISSN:2320-7817(p) | 2320-964X(o)  

 

Research Article  Open Access 
 

© The Authors, 2024  www.ijlsci.in                                                                                | 291 

 

 

Discovery of Small Molecule TLR4 Inhibitors as Potential 
Therapy for Alzheimer’s Disease 
 
Vemulapalli Sindhu 
 
Vista del Lago 
Email: sindhuv0322@gmail.com 

 
Manuscript details: ABSTRACT 

Received: 18.07.2024 
Accepted: 24.08.2024  
Published: 30.09.2024 
 
Cite this article as:  
Vemulapalli Sindhu (2024) Discovery of Small 
Molecule TLR4 Inhibitors as Potential 
Therapy for Alzheimer’s Disease, Int. J. of Life 
Sciences, 12 (3): 291-301. 
 
 
Available online on http://www.ijlsci.in  
ISSN: 2320-964X  (Online) 
ISSN: 2320-7817 (Print) 
 

Open Access This article is 
licensed under a Creative 
Commons Attribution 4.0 

International License, which permits use, 
sharing, adaptation, distribution and 
reproduction in any medium or format, as 
long as you give appropriate credit to the 
original author(s) and the source, provide a 
link to the Creative Commons licence, and 
indicate if changes were made. The images 
or other third-party material in this article 
are included in the article’s Creative 
Commons licence, unless indicated otherwise 
in a credit line to the material. If material is 
not included in the article’s Creative 
Commons licence and your intended use is 
not permitted by statutory regulation or 
exceeds the permitted use, you will need to 
obtain permission directly from the copyright 
holder. To view a copy of this licence, visit 
http://creativecommons.org/ 
licenses/by/4.0/. 

 

Alzheimer’s is a potent neurodegenerative disease that causes 

cognitive decline. Microglia are phagocytes in the brain that can play a 

role in cell death and neuroinflammation, leading to Alzheimer’s. 

Microglia have surface receptors that activate them when ligated, and 

one such receptor is toll-like receptor 4 (TLR4) which this research 

focuses on inhibiting. By identifying compounds that obstruct the 

pathway between TLR4 and microglia, the neuroinflammatory 

response associated with microglial activation in neurodegenerative 

diseases will be reduced. Although experiments targeting TLR4 

inhibition have been performed, this paper employs a novel approach 

by using a database of 20 million compounds for virtual screening to 

identify a suitable target compound, overcoming limitations in past 

studies. To execute the drug discovery process, TLR4’s binding sites 

were identified using a geometric, energetic, and machine-learning 

approach. Then, pharmacophore maps were created and virtual 

screening was conducted to identify 20 compounds that could inhibit 

TLR4. The 10 molecules with the most favorable Gibbs Free Energy 

were selected and their absorption and toxicity were tested. This 

process yielded one promising compound as a TLR4 and Alzheimer’s 

antagonist.  
 

Keywords: TLR4, Drug discovery, Alzheimer’s Disease, 

Neuroinflammation, Virtual screening 

 
1. INTRODUCTION:  

 

Alzheimer’s, a progressive neurodegenerative disease that is caused 

by damage to neurons, is the fifth-leading cause of death in Americans 

ages 65 and older (Centers for Disease Control and Prevention, 2020). 

From 2000 to 2019, deaths stemming from Alzheimer’s disease (AD) 

increased by more than 145%, and, by 2050, AD cases are expected to 

triple globally (Alzheimer's Disease Facts and Figures, 2023; Scheltens 

et al., 2021; Centers for Disease Control and Prevention, 2020). In 

2020, 5.8 million Americans were living with AD and the risk of 

developing this disease has been shown to increase with age 

(Scheltens et al., 2021). With Alzheimer’s prevalence, the causes and  
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effects of the disease are critical to understand for 

therapeutic methods to be developed. 

 

AD is characterized by plaque buildup and 

neurofibrillary tangles (NFTs) (Hur, 2022). Different 

theories regarding AD pathology exist, with the 

amyloid hypothesis being one of the most prevalent. 

The amyloid hypothesis states that the misfolding of 

extracellular β-amyloid (Aβ) protein accumulated in 

plaques and misfolded intracellular tau protein in 

NFTs leads to AD (Chen et al., 2017).  

 

Abnormally aggregated Aβ and tau aggregates, which 

cause NFTs, affect neuroinflammation and synapse 

loss caused by activated microglia (Bamberger et al., 

2003). “Neuroinflammation” refers to a pro-

inflammatory response in the central nervous system 

(CNS) that occurs as glial cells including microglia 

mobilize in response to an injury (Glass et al., 2010). 

Microglia are vital to immune responses, but their role 

in responding to injurious stimuli by activating an 

inflammatory pathway can exacerbate AD (Yang et al., 

2020; Al-Ghraiybah et al., 2022). 

 

As resident phagocytes of the CNS, microglia can clear 

the brain of pathogens and contribute to synaptic 

protection (Al-Ghraiybah et al., 2022). The phenotype 

that microglia develop is dependent on the stimuli 

present; they can develop the M1 phenotype which has 

pro-inflammatory functions or the M2 phenotype 

which has anti-inflammatory functions. When 

activated by pathological triggers like protein 

aggregates, microglia migrate to the injury site and 

initiate an immune response by recognizing danger-

associated or pathogen-associated molecular patterns 

(DAMPs/PAMPs) via specific receptors (Kwon and 

Koh, 2020). In AD, microglia bind to Aβ oligomers 

through receptors such as toll-like receptor 4 (TLR4). 

This leads to a phenotypic change as microglia become 

pro-inflammatory, inducing the production of 

cytokines and chemokines which contribute to the 

inflammation and neuronal loss in AD (Wu et al., 2022; 

Ciesielska et al., 2021). 

 

Microglia are activated through receptors on their 

surface such as TLR4, a pattern-recognition receptor 

essential to the immune response (Akira et al., 2006; 

Płóciennikowska et al., 2015). TLR4 is activated by 

lipopolysaccharides (LPS) through binding facilitated 

by the MD-2 protein, forming the TLR4/MD-2/LPS 

complex (Calvo-Rodriguez et al., 2020). This complex 

triggers downstream signaling pathways, primarily 

through the adaptor protein myeloid differentiation 

factor 88, resulting in the activation of NF-κB. TLR4/ 

NF-κB is a critical transcription factor in microglia that 

upregulates several M1 genes encoding cytokines, 

growth factors, and other inflammatory mediators 

(Duan et al., 2022; Mangalmurti and Lukens, 2022). 

Additionally, TLR4 can be activated by damage-

associated molecular patterns (DAMPs) (Ciesielska et 

al., 2021). When microglia are activated, pro-

inflammatory cytokines including tumor necrosis 

factor-α (TNF-α) and interleukin-6 (IL-6) increase as 

do cytosolic Ca2+ concentrations in neurons (Rajesh 

and Kanneganti, 2022). This increase in Ca2+ levels 

triggered by TLR4 activation leads to necroptosis and 

mitochondrial Ca2+ overload, accelerating neuro-

degeneration (Zusso et al., 2019; Akira et al., 2006). 

Necroptosis, an inflammatory form of cell death that 

releases intracellular contents acting as DAMPs, is 

triggered by the ligation of receptors such as TLR4, 

leading to a positive feedback cycle (Płóciennikowska 

et al., 2015). 

 

 

2. MATERIALS AND METHODS 

 

2.1. Analysis of binding sites in TLR4 

2.1.1 DoGSiteScorer 

DoGSiteScorer is a platform that analyzes protein-

ligand complexes (Volkamer et al., 2012). Specifically, 

it determines binding sites by identifying surface 

regions that are clustered based on geometric 

continuity. These areas are scored based on volume, 

depth, and surface area to evaluate their potential as 

binding sites, and information such as volume, surface 

area, and scores are displayed. 

 

To obtain the desired results, navigate to 

DoGSiteScorer, enter the PDB code (an identifier 

specific to each protein), and press the “Go” button. 

Several computational tools will appear next to a 3D 

model of the protein, with DoGSiteScorer as the second 

option. Click it, adjust any analysis settings, and click 

“Calculate.” A table will appear and binding sites can 

be highlighted by pressing the eye icon. Information 

including the drug score indicating the site's drug-

binding efficacy is shown. 

 

2.1.2 FTSite 

FTSite uses an energy-based method to determine 

protein binding sites, calculating the energies between 
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molecules and the protein surface and identifying 

potential binding sites (Ngan et al., 2012). 

 

To generate information via FTSite, enter the “Job 

Name”, the PDB code, the chain of interest, and 

optionally an email address to which results will be 

sent. Press “Find My Binding Site” and, once the results 

are ready, a 3D structure of the protein and the 

identified binding sites will be displayed.  

 

2.1.3 PrankWeb 

PrankWeb is a website that models protein-ligand 

binding sites using machine-learning to predict 

binding sites based on chemical areas around the 

protein surface (Jendele et al., 2019). 

 

After entering the PrankWeb website, enter the PDB 

code and adjust the settings—such as selecting which 

chains to investigate by unselecting the “original 

structure” box— and click “Submit” to generate 

binding sites. A 3D model of the protein with the sites 

highlighted will appear along with the sequence of 

amino acids composing the protein and a table of 

information about the clusters.  

 

2.2 Pharmacaphore Maps and Virtual Screening 

2.2.1 Druggable Cluster Identification Using Pocket 

Query 

PocketQuery is a website that uses PDB codes to 

identify druggable protein clusters. The amino acid 

residues composing the cluster, maximum cluster 

distance, and cluster score are displayed (Koes and 

Camacho, 2012a). 

On PocketQuery, enter the PDB code in the “ID” box 

and click “Search.” A table with the above data will 

appear, and clicking on each row will show the 

molecular structure and residues. 

 

2.2.2 Virtual Screening through ZINCPharmer 

ZINCPharmer is a web interface that virtually screens 

compounds in the ZINC database using the clusters 

generated by PocketQuery. Pharmacophore maps that 

highlight the key interaction and spatial features of the 

compounds are created, enabling the identification of 

potential small molecule drug candidates that can fit 

with the chosen pharmacophore classes (Koes and 

Camacho, 2012b). 

 

On PocketQuery, click on the “Export” tab towards the 

bottom of the page. Click “Send to ZINCPharmer” so 

that the cluster selected is analyzed in ZINCPharmer. 

Once on ZINCPharmer, click to the “Viewer” tab and 

unselect the “Visible” checkboxes under the “Ligand” 

and “Receptor Residues” sections for clarity. Go back 

to the “Pharmacophore” tab and under the “Enabled” 

column, unhighlight the checkboxes for the 

pharmacophore classes such that at least three classes 

of interest remain. Click “Submit Query” and press 

“RMSD” twice to sort from lowest to highest RMSD 

scores. Select the compounds with the lowest RMSD 

scores after testing multiple clusters and classes.  

 

2.3 Molecular Docking through SwissDock 

SwissDock is an online tool that models interactions 

between small molecules and target proteins. The 

protein and molecule interaction structures and Gibbs 

Free Energy, which is denoted as the “SwissParam 

Score,” are amongst the outputted data (Bugnon et al., 

2024; Röhrig et al., 2023). 

 

After navigating to the SwissDock website, enter the 

SMILES format for the small molecule. The SMILES 

identifier can be obtained from a database containing 

chemical properties of molecules called PubChem 

(PubChem, 2024). Then, press “Prepare Ligand.” After 

confirming that a green checkmark has appeared, 

move on to step 2: “Submit a target.” Enter the PDB 

code, press “Enter,” select which chains of the protein 

to model, select the heteroatoms to keep, and then 

ensure that the green checkmark has appeared after 

clicking “Prepare Ligand.” In step 3, enter the 

dimensions for the 3D search space for small molecule 

interaction with the target protein. In field 4, enter the 

number of random initial conditions to be generated. 

Finally, in field 5, enter an email that will make results 

easily accessible. 

 

2.4 Drug Likeness and Toxicity 

2.4.1 Drug Properties Predicted by SwissADME 

SwissADME is an interface that assesses the drug-

likeness of compounds to assist. Information including 

the solubility, permeation, and other pharmacokinetics 

of the molecules is outputted (Daina et al., 2017). 

 

To start, SwissADME will require the SMILES format of 

the compounds. Enter the SMILES for all compounds 

with each on a separate line. Click “Run” and the 3D 

structure of the molecule will appear along with 

information such as molecular mass and hydrogen 

acceptors and donors. The drug likeness of the 

molecule is evaluated per rules and any rule violations 

are noted in the outputs.  
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2.4.2 Toxicity Predicted by ProTox 3.0 

ProTox 3.0 is a website that uses machine learning to 

predict the toxicity of compounds. Information such as 

acute and organ toxicity, LD50 (mg/kg), and toxicity 

class are provided (Banerjee et al., 2024). 

Upon reaching the website, enter the SMILES format 

for the compound into the input box. Select the specific 

categories for toxicity testing or choose “All” to test all 

targets. After clicking “Start Tox-Prediction,” the LD50 

and toxicity class value and all selected target areas 

and their corresponding toxicity will be displayed. 

Scroll down to view the toxicity comparison charts. 

 

RESULTS 

 

3.1. Analysis of Binding Sites in TLR4 

In drug discovery for small molecule inhibitors of 

TLR4, potential binding sites for compounds must be 

identified to ensure that TLR4 is a viable target. Using 

three different tools maximizes the chances of 

identifying optimal binding sites for drug development 

by considering multiple parameters, including 

geometric, energetic, and chemical properties. 

DoGSiteScorer’s geometric analysis focuses on the 

physical properties of the binding sites. This tool was 

used because evaluating the size, shape, and surface 

properties of binding sites is essential for 

understanding how well potential inhibitors may 

interact with TLR4. FTSite's energy-based approach 

reveals the most energetically favorable binding sites, 

indicating where protein-ligand interactions are likely 

strongest. PrankWeb leverages machine learning and 

considers many different parameters to predict 

chemically promising sites. Although other tools can 

be used to identify sites, the above 3 interfaces were 

selected as they provide an exhaustive approach that 

ensures that TLR4 has viable binding sites by various 

evaluation standards. 

 

Table 1. Seventeen binding sites geometrically predicted by DoGSiteScorer for TLR4 (PDB: 2Z64). 

Name Volume (A3) Surface Area (A2) Drug Score 

P_0 631.94 730.88 0.88 

P_1 519.51 592.53 0.89 

P_10 226.6 594.31 0.58 

P_11 184.85 160.34 0.53 

P_12 167.38 368.75 0.33 

P_13 154.76 263.59 0.37 

P_14 132.52 427.98 0.32 

P_15 129.22 344.54 0.33 

P_16 128.15 211.5 0.18 

P_2 382.81 492.8 0.79 

P_3 334.46 604.92 0.64 

P_4 321.75 690.07 0.52 

P_5 275.53 473.04 0.48 

P_6 273.2 583.52 0.6 

P_7 272.43 367.94 0.48 

P_8 249.12 396.74 0.62 

P_9 237.18 496.04 0.61 
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Figure 1. DoGSiteScorer geometrically found 17 binding sites on chain A of TLR4 with PDB 2Z64. 

 
Figure 2. FTSite predicted 3 binding sites on chain A of TLR4 (PDB 2Z64) using an energetic method. 

 

 
Figure 3. PrankWeb, using machine learning, predicted 10 binding sites on TLR4 (PDB 2Z64). 

 

Table 2. Ten binding sites were predicted by PrankWeb for protein TLR4 with PBD 2Z64. 

Pocket Rank Pocket Score Number of Amino Acids 

1 56.30 32 

2 8.87 21 

3 4.59 15 

4 1.72 10 

5 1.60 9 

6 1.14 5 

7 0.96 7 

8 0.87 5 

9 0.83 6 

10 0.80 6 

http://www.ijlsci.in/
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3.1.1 DoGSiteScorer 

DoGSiteScorer identified 17 binding sites for TLR4, 

indicating that it is a promising target. The volume, 

surface area, and drug score are provided for each site. 

The largest binding site is P_0 with a volume of 631.94 

A3, a surface area of 730.88 A2, and a drug score of 

0.88. P_1, although smaller than P_0 with a volume of 

519.51 A3 and a surface area of 592.53 A2, had the 

highest drug score of 0.89. Volumes and surface areas 

of the predicted binding sites ranged from 128.15 

A3(P_16) to 631.94 A3 and 160.34 A2 (P_11) to 730.88 

A2, respectively. Drug scores fell between 0.18 (P_16) 

to 0.89. 

 

3.1.2 FTSite 

FTSite detected three viable binding sites represented 

in purple, pink, and green in Figure 2.  

 

3.1.3 PrankWeb 

PrankWeb detected 10 binding sites. The pocket with 

the highest score had a score of 56.30 and 32 amino 

acids. Scores in the ten sites were between 0.80 and 

56.30 with the number of amino acids ranging from 6 

to 32 residues.  

 

Overall, considering that both ProteinPlus (which 

utilizes the reputable geometric approach) and 

PrankWeb (which considers many factors through 

machine learning) predicted 17 and 10 sites, 

respectively, it was unexpected that FTSite provided 

only 3 binding sites. This may indicate that some of the 

binding sites identified by ProteinPlus and PrankWeb 

had improper hydrophobicity and hydrophilicity 

balance. For example, the pocket ranked number 3 by 

PrankWeb proved to be composed of arginine and 

aspartic acid, 2 highly polar amino acids. FTSite may 

not have deemed this pocket a binding site if the 

excessive polarity reduced binding affinity, making it 

difficult for ligands to bind. Still, at least 3 sites were 

identified by experimenting using ProteinPlus, FTSite, 

and PrankWeb.  

 

3.2 Drug Discovery Tools to Generate 

Pharmacophore Maps and Small Molecule Targets 

Pharmacophore maps are crucial in drug discovery as 

they highlight necessary molecular features indicating 

biological activity that determines the drug’s potential. 

Key features such as the types and number of 

interactions between proteins are presented in these 

maps. In this paper, the website PocketQuery is used 

to create pharmacophore maps. Virtual screening is 

then conducted by ZINCPharmer which utilizes a 

computational method that identifies potential drug 

candidates that can bind to the TLR4 sites from vast 

libraries of small molecules. 

 

3.2.1 Identification of Pharmacophore Maps 

Binding to TLR4 using PocketQuery 

PocketQuery generated 16 clusters that had promising 

scores (determined based on the druggability of the 

cluster) that were higher than the threshold of 0.7. The 

top 4 of these clusters were selected and their 

corresponding information is displayed in Table 3. The 

highest-ranking cluster scored 0.811032, indicating 

that promising binding sites on the TLR4 surface were 

present.  

 

3.2.2 Virtual Screening for Small Molecule Targets 

using ZINCPharmer 

All 16 clusters were virtually screened using 

ZINCPharmer and the lowest RMSD (root-mean-

square-deviation) compounds were selected. Since a 

lower RMSD score indicates a stronger compound-

receptor match, the 20 lowest RMSD candidates were 

chosen. Several compounds had an RMSD of 0.004, so 

3 of these compounds were randomly chosen from 

clusters 3 and 4.  

 

 

 

Table 3. PocketQuery’s output of the amino acids, distance, and score of the top 4 clusters of TLR4 (PDB 2Z64).  

Cluster  Residues Distance Score 

1 HIS96; HIS98; ASP99; ASP101 9.6257 0.811032 

2 HIS98; ASP99; ASP100; ARG106 10.8619 0.804953 

3 HIS98; ASP101 9.6257 0.802837 

4 HIS98; ASP99; ASP101 9.6257 0.801867 
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Table 4. Results of pharmacophore screenings from ZINCPharmer for TLR4 (PDB: 2Z64). The pharmacophore 

class, spatial coordinates in the model, compound, mass, and RMSD (root-mean-square-deviation) are displayed. 

The compounds with the 20 lowest RMSDs were selected. 

Cluster Pharmacophore Class x y z Name RMSD Mass 

1 Hydrogen Acceptor -27.76 -8.04 -4.57 ZINC03142646 
ZINC04694172 
ZINC08843242 
ZINC91602001 
ZINC10092251 
ZINC78631558 
ZINC63786726 
ZINC19583985 
ZINC90107583 
ZINC03305530 

0.000 
0.001 
0.001 
0.001 
0.002 
0.002 
0.002 
0.003 
0.003 
0.003 

525 
402 
501 
308 
359 
327 
432 
414 
360 
386 

Hydrogen Acceptor -27.89 -14.86 2.96 

Hydrophobic -24.37 -6.89 -3.77 

2 Hydrogen Acceptor -27.76 -8.04 -4.57 ZINC09686198 
ZINC14168858 
ZINC04139831 
ZINC06441606 
ZINC05032710 
ZINC05032516 

0.000 
0.003 
0.003 
0.003 
0.003 
0.003 

399 
330 
340 
370 
358 
354 

Hydrogen Acceptor -32.59 -12.22 3.74 

Hydrophobic -24.37 -6.89 -3.77 

3 Hydrogen Acceptor -27.46 -12.72 3.05 ZINC76762626 0.004 358 

Hydrogen Acceptor -27.89 -14.86 2.96 

Hydrogen Acceptor -32.59 -12.22 3.74 

4 Hydrogen Acceptor -27.46 -12.72 3.05 ZINC92797485 
ZINC12339614 
ZINC89512669 

0.003 
0.004 
0.004 

365 
351 
339 Hydrogen Acceptor -27.89 -14.86 2.96 

Hydrophobic -24.37 -6.89 -3.77 

 

 

Based on the results, many molecules have a high 

probability of binding to TLR4. The most promising of 

them are ZINC03142646 and ZINC09686198 which 

have RMSD scores of 0, indicating that the two 

superimposed molecules are perfectly aligned. The 

other 18 compounds also display a high likelihood of 

binding to TLR4, with the highest RMSD at a relatively 

low value of 0.004. 

 

3.3 Molecular Docking Results for TLR4 

The 3 compounds with the lowest Gibbs Free Energy 

and therefore the most favorable interactions with 

TLR4 are ZINC08843242, ZINC03142646, and 

ZINC04694172. These compounds have a △G of -

8.5248, -8.2719, and -7.6852 kcal/mol respectively. 

These 3 molecules, along with 7 more compounds, will 

be further investigated due to their △G exceeding -7.5 

kcal/mol, proving them to be the 10 most successful 

candidates with favorable interaction energies 

 

3.4 Drug Likeness Predicted by SwissADME 

From SwissDock, the 10 compounds with the lowest 

△G were selected for SwissADME evaluation. The 

number of hydrogen bond acceptors and donors, 

molecular mass, LogP, Lipinski rule violations, and 

permeability of the blood-brain barrier for each 

compound are produced. Lipinski’s rule states that the 

compound’s molecular weight must be less than 500 

g/mol, the number of hydrogen bond donors must not 

exceed 5, the number of hydrogen bond acceptors 

must not exceed 10, and the calculated LogP value 

must not exceed 5 for the molecule’s absorption and 

permeation efficacy. 
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Figure 4. 20 selected molecules from ZINCPharmer for TLR4 inhibition (PDB: 2Z64). Molecules are shown 

superimposed over their corresponding pharmacophore map. 

 

Table 5. Compound and △G data from SwissDock which modeled compound interaction with TLR4. 

Compound SwissParam Score (△G) 

(kcal/mol) 

Compound SwissParam Score (△G) 

(kcal/mol) 

ZINC03142646 -8.2719 ZINC09686198 -7.6621 

ZINC04694172 -7.6852 ZINC14168858 -7.4757 

ZINC08843242 -8.5248 ZINC04139831 -7.5866 

ZINC91602001 -7.5032 ZINC06441606 -7.4965 

ZINC10092251 -6.9176 ZINC05032710 -7.5028 

ZINC78631558 -7.4033 ZINC05032516 -7.4282 

ZINC63786726 -7.2505 ZINC76762626 -7.5691 

ZINC19583985 -7.6239 ZINC92797485 -7.4294 

ZINC90107583 -7.5952 ZINC12339614 -7.3448 

ZINC03305530 -7.3271 ZINC89512669 -7.5428 
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Table 6. Drug likeness of top 10 compounds by SwissADME for inhibition of protein TLR4. 

Compound  Hydrogen 

bond 

acceptors 

Hydrogen 

bond donors 

Mass 

(g/mol) 

LogP 

value 

Number of 

Lipinski Rule 

Violations 

Blood Brain 

Barrier Permeant 

ZINC08843242 5 2 500.54 3.94 2 No 

ZINC03142646 8 2 524.52 3.85 1 No  

ZINC04694172 5 2 402.44 3.28 0 No 

ZINC09686198 7 0 399.47 2.55 0 No  

ZINC19583985 7 1 413.53  3.16 0 No  

ZINC90107583 6 1 360.37  2.50 0 No  

ZINC04139831 6 0 340.34  2.31 0 No 

ZINC76762626 6 0 358.34  2.31 0 No 

ZINC89512669 4 1 339.39  2.80 0 Yes 

ZINC91602001 3 2 308.42 2.82 0 Yes 

 

 

Table 7. LD50 (mg/kg), toxicity class ranking, active areas, and probability of being active from ProTox 3.0 are 

shown for ZINC91602001 which is most suitable for TLR4  inhibition. 

LD50 (mg/kg) Toxicity Class (out of 6) Active Target Probability 

4580 5 Neurotoxicity 0.58 

Respiratory toxicity 0.64 

Carcinogenicity 0.60 

BBB-barrier 0.60 

GABA receptor  0.51 

 
Surprisingly, the two compounds with the highest △G 

were the only ones to violate Lipinski's rules. The third 

through tenth compounds did not violate Lipinski’s 

rule. However, considering that the drug must be 

absorbed and able to penetrate the blood-brain barrier 

(BBB) to reach TLR4, additional factors such as 

solubility, gastrointestinal (GI) absorption, and BBB 

permeation were also considered. The compound that 

scored highest across all standards was 

ZINC91602001 which met Lipinski’s rules and was 

soluble, had a “high” GI absorption, and was a BBB 

permeant.  

 

3.5 Toxicity of Compound ZINC91602001 

Predicted by ProTox 3.0 

Since ZINC91602001 has proved to be the most 

suitable candidate thus far, its toxicity was examined 

through ProTox 3.0 to ensure that this molecule not 

http://www.ijlsci.in/
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only successfully inhibits TLR4 theoretically but can 

also prove to be a non-lethal, safe drug administered to 

humans.  

 

Despite identifying five active target areas, the 

exhibited toxicity probabilities ranged from 0.51 to 

0.64, indicating that concerns are mild as all active 

probabilities are below the 0.7 threshold. Additionally, 

the toxicity exhibited in active and all other target 

areas is less than the active toxicity for average FDA-

approved drugs. Combined with the fact that the LD50 

is extremely high, meaning that an immense amount of 

ZINC91602001 would be needed to make the 

compound lethal, and the toxicity class rating is 5 out 

of 6, this drug is very likely safe and non-toxic.  

 

CONCLUSION 

 

Alzheimer’s is a life-threatening disease that has 

afflicted millions. This paper uses methods to 

determine TLR4’s binding sites, generate 

pharmacophore maps, run virtual screening of small 

molecules, simulate molecular docking, and identify 

the properties of drug candidates. This process has led 

to the identification of one promising compound, 

ZINC91602001. Although its Gibbs Free Energy was 

higher in comparison to other screened molecules at -

7.5032 kcal/mol, placing it at the tenth lowest △G out 

of the 20 candidates, this compound not only met 

Lipinski’s rule but was also the only molecule to be 

classified as soluble, have high GI absorption, and the 

ability to penetrate the BBB which is crucial for its 

practicality in inhibiting TLR4 in the brain. Overall, 

ZINC91602001 can be further evaluated through in 

vitro and in vivo experiments. In the future, cell-based 

assays can be utilized to determine if ZINC91602001 

reduces neuroinflammation in AD models and evaluate 

its potential to serve as a clinical Alzheimer’s 

antagonist. 
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