AI Integration in Lung Scaffolds for Biomaterial Selection and Properties

Authors

  • Tiffany Goh Cambridge Rindge and Latin School

Keywords:

lung tissue engineering, biomaterials, scaffold properties, artificial intelligence, tissue engineering

Abstract

Chronic lung diseases, including emphysema, interstitial fibrosis, and pulmonary vascular diseases, are the third leading cause of death worldwide, affecting more than 500 million people. These diseases are currently treated with lung transplantation when other medical therapies fail; however, there are significant challenges including donor shortages and high mortality rates, with over 75% of implanted lungs failing within 10 years. To address these limitations, lung tissue engineering (LTE) has emerged as an alternative approach to treat chronic lung diseases by transplanting functional bioengineered lungs. This review article aims to highlight the importance of biomaterial selection and to analyze the chemical and mechanical properties that are ideal for lung scaffolds. In this paper, AI applications in various LTE technologies that support the optimization of biomaterial selection and scaffold design are explored. The discussion of these topics gives a comprehensive overview of the material properties and emerging AI technologies improving the designs of lung scaffolds and their functionality. The integration of AI in scaffold design will produce progress in LTE as it will lead to more effective lung scaffolds.

Downloads

Download data is not yet available.

References

Andrikakou, P., Vickraman, K., & Arora, H. (2016). On the behaviour of lung tissue under tension and compression. Scientific Reports, 6, 36642. https://doi.org/10.1038/srep36642

Ashammakhi, N., GhavamiNejad, A., Tutar, R., Fricker, A., Roy, I., Chatzistavrou, X., Hoque Apu, E., Nguyen, K.-L., Ahsan, T., Pountos, I., & Caterson, E. J. (2022). Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering Part B: Reviews, 28(3), 633–664. https://doi.org/10.1089/ten.teb.2021.0012

Calle, E. A., Ghaedi, M., Sundaram, S., Sivarapatna, A., Tseng, M. K., & Niklason, L. E. (2014). Strategies for Whole Lung Tissue Engineering. IEEE Transactions on Biomedical Engineering, 61(5), 1482–1496. https://doi.org/10.1109/TBME.2014.2314261

Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal, 17(S4), 467–479. https://doi.org/10.1007/s00586-008-0745-3

Cosson, S., Otte, E. A., Hezaveh, H., & Cooper-White, J. J. (2015). Concise Review: Tailoring Bioengineered Scaffolds for Stem Cell Applications in Tissue Engineering and Regenerative Medicine. Stem Cells Translational Medicine, 4(2), 156–164. https://doi.org/10.5966/sctm.2014-0203

Doryab, A., & Schmid, O. (2022). Bioactive Cell-Derived ECM Scaffold Forms a Unique Cellular Microenvironment for Lung Tissue Engineering. Biomedicines, 10(8), 1791. https://doi.org/10.3390/biomedicines10081791

Edwards, Z., & Annamaraju, P. (2023). Physiology, Lung Compliance. In StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK554517/

Egorikhina, M. N., Bronnikova, I. I., Rubtsova, Y. P., Charykova, I. N., Bugrova, M. L., Linkova, D. D., & Aleynik, D. Ya. (2021). Aspects of In Vitro Biodegradation of Hybrid Fibrin–Collagen Scaffolds. Polymers, 13(20), 3470. https://doi.org/10.3390/polym13203470

Feng, J., Liu, B., Lin, Z., & Fu, J. (2021). Isotropic porous structure design methods based on triply periodic minimal surfaces. Materials & Design, 210, 110050. https://doi.org/10.1016/j.matdes.2021.110050

Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(24), 4195–4200. https://doi.org/10.1242/jcs.023820

Gharibshahian, M., Torkashvand, M., Bavisi, M., Aldaghi, N., & Alizadeh, A. (2024). Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin Research and Technology, 30(9), e70016. https://doi.org/10.1111/srt.70016

Gilpin, S. E., & Wagner, D. E. (2018). Acellular human lung scaffolds to model lung disease and tissue regeneration. European Respiratory Review, 27(148), 180021. https://doi.org/10.1183/16000617.0021-2018

Gould, G. S., Hurst, J. R., Trofor, A., Alison, J. A., Fox, G., Kulkarni, M. M., Wheelock, C. E., Clarke, M., & Kumar, R. (2023). Recognising the importance of chronic lung disease: A consensus statement from the Global Alliance for Chronic Diseases (Lung Diseases group). Respiratory Research, 24(1), 15. https://doi.org/10.1186/s12931-022-02297-y

Griffin, M., Premakumar, Y., Seifalian, A., Butler, P. E., & Szarko, M. (2016). Biomechanical Characterization of Human Soft Tissues Using Indentation and Tensile Testing. Journal of Visualized Experiments : JoVE, 118, 54872. https://doi.org/10.3791/54872

Guo, J. L., Januszyk, M., & Longaker, M. T. (2023). Machine Learning in Tissue Engineering. Tissue Engineering Part A, 29(1–2), 2–19. https://doi.org/10.1089/ten.tea.2022.0128

Hackett, T. L., & Osei, E. T. (2021). Modeling Extracellular Matrix-Cell Interactions in Lung Repair and Chronic Disease. Cells, 10(8), 2145. https://doi.org/10.3390/cells10082145

Hakim Khalili, M., Zhang, R., Wilson, S., Goel, S., Impey, S. A., & Aria, A. I. (2023). Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers, 15(10), Article 10. https://doi.org/10.3390/polym15102341

Hesselmann, F., Arnemann, D., Bongartz, P., Wessling, M., Cornelissen, C., Schmitz-Rode, T., Steinseifer, U., Jansen, S. V., & Arens, J. (2022). Three-dimensional membranes for artificial lungs: Comparison of flow-induced hemolysis. Artificial Organs, 46(3), 412–426. https://doi.org/10.1111/aor.14081

Homaeigohar, S., & Boccaccini, A. R. (2022). Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.809676

Huzum, B., Puha, B., Necoara, R. M., Gheorghevici, S., Puha, G., Filip, A., Sirbu, P. D., & Alexa, O. (2021). Biocompatibility assessment of biomaterials used in orthopedic devices: An overview (Review). Experimental and Therapeutic Medicine, 22(5), 1315. https://doi.org/10.3892/etm.2021.10750

Kular, J. K., Basu, S., & Sharma, R. I. (2014). The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering, 5, 2041731414557112. https://doi.org/10.1177/2041731414557112

Lata, S., Sharma, B. K., & Raghava, G. P. S. (2007). Analysis and prediction of antibacterial peptides. BMC Bioinformatics, 8, 263. https://doi.org/10.1186/1471-2105-8-263

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

Liu, S., Yu, J.-M., Gan, Y.-C., Qiu, X.-Z., Gao, Z.-C., Wang, H., Chen, S.-X., Xiong, Y., Liu, G.-H., Lin, S.-E., McCarthy, A., John, J. V., Wei, D.-X., & Hou, H.-H. (2023). Biomimetic natural biomaterials for tissue engineering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications. Military Medical Research, 10, 16. https://doi.org/10.1186/s40779-023-00448-w

Lü, L., Shen, H., Kasai, D., & Yang, Y. (2022). Fabrication and Characterization of Alveolus-Like Scaffolds with Control of the Pore Architecture and Gas Permeability. Stem Cells International, 2022, 1–12. https://doi.org/10.1155/2022/3437073

Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1377. https://doi.org/10.3390/polym3031377

McDonald, S. M., Augustine, E. K., Lanners, Q., Rudin, C., Catherine Brinson, L., & Becker, M. L. (2023). Applied machine learning as a driver for polymeric biomaterials design. Nature Communications, 14(1), 4838. https://doi.org/10.1038/s41467-023-40459-8

McInnes, A. D., Moser, M. A. J., & Chen, X. (2022). Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. Journal of Functional Biomaterials, 13(4), 240. https://doi.org/10.3390/jfb13040240

Moon, S. H., Hwang, H. J., Jeon, H. R., Park, S. J., Bae, I. S., & Yang, Y. J. (2023). Photocrosslinkable natural polymers in tissue engineering. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1127757

Morais, J. M., Papadimitrakopoulos, F., & Burgess, D. J. (2010). Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. The AAPS Journal, 12(2), 188–196. https://doi.org/10.1208/s12248-010-9175-3

Naumann, J., Koppe, N., Thome, U. H., Laube, M., & Zink, M. (2022). Mechanical properties of the premature lung: From tissue deformation under load to mechanosensitivity of alveolar cells. Frontiers in Bioengineering and Biotechnology, 10, 964318. https://doi.org/10.3389/fbioe.2022.964318

Nichols, J. E., Niles, J. A., & Cortiella, J. (2009). Design and development of tissue engineered lung: Progress and challenges. Organogenesis, 5(2), 57–61. https://doi.org/10.4161/org.5.2.8564

Nosrati, H., & Nosrati, M. (2023). Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics, 8(5), 442. https://doi.org/10.3390/biomimetics8050442

O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

Onal, S., Alkaisi, M. M., & Nock, V. (2022). Microdevice-based mechanical compression on living cells. iScience, 25(12), 105518. https://doi.org/10.1016/j.isci.2022.105518

Prakash, Y. S., Tschumperlin, D. J., & Stenmark, K. R. (2015). Coming to terms with tissue engineering and regenerative medicine in the lung. American Journal of Physiology-Lung Cellular and Molecular Physiology, 309(7), L625–L638. https://doi.org/10.1152/ajplung.00204.2015

Revete, A., Aparicio, A., Cisterna, B. A., Revete, J., Luis, L., Ibarra, E., Segura González, E. A., Molino, J., & Reginensi, D. (2022). Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. International Journal of Biomaterials, 2022, 3606765. https://doi.org/10.1155/2022/3606765

Sajkiewicz, P., & Kołbuk, D. (2014). Electrospinning of gelatin for tissue engineering – molecular conformation as one of the overlooked problems. Journal of Biomaterials Science, Polymer Edition, 25(18), 2009–2022. https://doi.org/10.1080/09205063.2014.975392

Santis, M. M. D., Bölükbas, D. A., Lindstedt, S., & Wagner, D. E. (2018). How to build a lung: Latest advances and emerging themes in lung bioengineering. European Respiratory Journal, 52(1). https://doi.org/10.1183/13993003.01355-2016

Sarabia-Vallejos, M. A., Ayala-Jeria, P., & Hurtado, D. E. (2021). Three-Dimensional Whole-Organ Characterization of the Regional Alveolar Morphology in Normal Murine Lungs. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.755468

Seadler, B. D., Toro, F., & Sharma, S. (2024). Physiology, Alveolar Tension. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK539825/

Shakir, S., Hackett, T. L., & Mostaço-Guidolin, L. B. (2022). Bioengineering lungs: An overview of current methods, requirements, and challenges for constructing scaffolds. Frontiers in Bioengineering and Biotechnology, 10, 1011800. https://doi.org/10.3389/fbioe.2022.1011800

Shirani, A., Ganji, F., Golmohammadi, M., Hashemi, S. M., Mozafari, M., Amoabediny, G., Karkuki Osguei, N., & Samadikuchaksaraei, A. (2021). Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. Materials Science and Engineering: C, 122, 111938. https://doi.org/10.1016/j.msec.2021.111938

Soriano, J. B., Kendrick, P. J., & Paulson, K. R. (2020). Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet. Respiratory Medicine, 8(6), 585–596. https://doi.org/10.1016/S2213-2600(20)30105-3

Suamte, L., Tirkey, A., Barman, J., & Jayasekhar Babu, P. (2023). Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Materials in Manufacturing, 1, 100011. https://doi.org/10.1016/j.smmf.2022.100011

Tonndorf, R., Aibibu, D., & Cherif, C. (2021). Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. International Journal of Molecular Sciences, 22(17), 9561. https://doi.org/10.3390/ijms22179561

Downloads

Published

2024-12-31

How to Cite

Goh, T. (2024). AI Integration in Lung Scaffolds for Biomaterial Selection and Properties. International Journal of Life Sciences, 12(4), 419–428. Retrieved from https://ijlsci.in/ls/index.php/home/article/view/1001