Environmental impact on heavy metals and conventional effluent treatment methodologies in steel industrial waste – A review

Environmental impact on heavy metals and conventional effluent treatment methodologies in steel industrial waste – A review

Authors

Keywords:

Heavy metal, Environmental impact, Conventional effluent treatment methodologies, Biodegrading microorganisms.

Abstract

Steel industry is the business of processing iron ore into steel. In the process of steel making the industry consume lots of energy and emits lots of waste. The waste which discharge from this industry contain many toxic substances.  These industrial wastes pollute our environment hardly. Treated this harmful waste using microorganism to breakdown or neutralize it and carried out exsitu or insitu is called bioremediation. This article reviews the waste management through bioremediation in Steel industries.

Downloads

Download data is not yet available.

Author Biography

Jayasheela D

Associate Professor

Sri Ramakrishna College of Arts and Science,

Coimbatore

Tamil Nadu

References

Affandi, I. E., Suratman, N. H., et al., 2014 Degradation of oil and grease from high strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. International Biodeterioration & Biodegradation 95, 33–40.

Al Saadi, M.; Mamun A. A.; Alam M. Z.; Amosa M. K.; Atieh M. A. 2016 Removal Of Cadmium From Water By CNT-PAC Composite: Effect Of Functionalization. NANO, 11 (1), 1650011.

Alok Prasad Das and Susmita Mishra 2010 Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain Journal of carcinogenesis

Ameer Basha S and Rajaganesh 2014 Microbial Bioremediation of Heavy Metals From Textile Industry Dye Effluents using Isolated Bacterial Strains Int.J.Curr.Microbiol.App.Sci

Amosa, M. K.; Jami, M. S.; Muyibi, S. A.; Alkhatib, M. F. R.; Jimat D. N. 2013 Zero Liquid Discharge and Water Conservation Through Water Reclamation & Reuse of Biotreated Palm Oil Mill Effluent: A Review. Int. J. Acad. Res., 5 (4).

Amuda, O.; Amoo, I.; Ipinmoroti, K.; Ajayi, O. 2006 Coagulation / Flocculation Process in the Removal of Trace Metals Present in Industrial Wastewater. J. Appl. Sci. Environ. Manage., 10 (3), 1–4.

Arokiasamy J. Francis Geeta A. Joshi-Tope , and Cleveland J. Dodge 1996 Biodegradation of Nickel−Citrate and Modulation of Nickel Toxicity by Iron Environmental science technology Vol 30

Baath, E. 1989 Effects of Heavy Metals in Soil on Microbial Processes and Populations (A Review), Water Air Soil Pollut. 47 (3), 335–379.

Beveridge, T.J. 1986. The immobilization of soluble metals by bacterial walls. Biotechnology and Bioengineering Symposium. 127–140.

Bieszkiewicz E, Hoszowski A 1978 Effect of copper and tri- and hexavalent chromium on the work of activated sludge. Acta Microbiol Poll 27(2):147–153

Brady, D., Duncan, J.R. 1993. Bioaccumulation of metal cations by Sacchromyces cerevisiae. Bio Hydro Metallurgical Technologies; Torma A.E., Apel, M.L., 2: 711–724.

Chen, L., Y. Zhang, and D. J. Jacob, 2015 “Trends of atmospheric mercury”, American Geophysical research

Darnall, D.W., Greene, B., Gardea Torresday,J.1988. Gold binding to algae. Bio Hydro Metallury, 487–498.

Das, N.; Vimala, R.; Karthika, P. 2008 Biosorption of Heavy Metals – An Overview. Indian J. Biotechnol., 7 (2), 159–169.

Dianne E. Wileya,b *, Minh T. Hoa,b, Andrea Bustamante, 2011 “Assessment of Opportunities for CO2 Capture at Iron and Steel Mills: An Australian Perspective” Article in Elsevier Science direct Energy Procedia

Donghee Park a, Dae Sung Lee b,*, Young Mo Kim a, Jong Moon Park a,* , 2008 “Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility” Elsevier Science direct Bioresource technology 99

Ebtesam El. Bestawy, Shacker Helmy, Hany Hussien, Mohamed Fahmy, Ranya Amer 2013 “Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria”, Appl Water Sci 3:181–192

Edward Ketchum, 2007 “Air and Water Pollution in the Iron and Steel Industry: a Case Study” Journal of Geography

European Commission 2008, Most Appropriate Treatment to Control Environmental Impact of Effluents in Iron and Steel Industry Published.

Fathima Benazir J*, Suganthi R,. Rajvel D, Padmini Pooja M. and. Mathithumilan B 2010 Bioremediation of chromium in tannery effluent by microbial consortia African j. biotech Vol.9(21), pp. 3140-3143 ,

Fathima Benazir, J., Suganthi, R., Rajvel, D., Padmini Pooja, M., Mathitumilan, B. 2010. Bioremediation of chromium in tannery effluent by microbial consortia. African J. Biotechnol., 9(21): 3140–3143.

Ganiyu Oladunjoye Oyetibo,Matthew Olusoji Ilori,Oluwafemi Sunday Obayori,Olukayode Oladipo Amund, 2013 Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt Journal of Basic microbiology Vol 53, Issue 11

Hiral Borasiya and *Maulin P Shah 2017 Waste Water Treatment by Environmental Microbiology Inter. J Envi Sci & Natural Res Volume 1 Issue 2.

Holan, Z., Volesky, B., Prasetyo, I. 1994 Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioenerg., 43: 1001–1009.

Jayapriya D, 2015 Bioremediation of Iron and Steel industrial waste – A review International J of Eng innov. research Volume 4

Joyoti Biswas, 2013 Evaluation of Various Method and Efficiencies for Treatment of Effluent from Iron and Steel Industry, International journal of Mechanical engineering and Robotics research Vol. 2, No. 3.

Junwei Qian,, DapingLi, Guoqiang Zhan LiangZhang WentaoSu, PingGao 2012 Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila, Bioresource Technology Vol 116, , Pg 66-73

Kazuya Watanabe, 2001 “Microorganisms relevant to bioremediation” Current Opinion in Biotechnology, 12:237–241

Knowles C J, 2019 Cyanide utilization and degradation by microorganisms Novartis Foundation Symposia, Pubmed

Krishna veni R. Parimala devi Y Ram gopal Rao S, 2013 “Bioremediation of industrial effluents using soil microorganism, Inter J of adv biotec and research, Vol 4 pp51 -56

Kumar, P. P. Gupta, P. K.; Ranjan, M. 2008 Operating Experiences with Corex and Blast Furnace at JSW Steel Ltd. Iron making Steelmaking, 35 (4), 260– 263.

Kuppusamy Sathishkumar,Jayaraman Narenkumar, Jagannathan Madhavan, Kadarkarai Murugan, Aruliah Rajasekar 2017 Electrochemical decolorization and biodegradation of tannery effluent for reduction of chemical oxygen demand and hexavalent chromium Journal of Water Process Engineering Vol 20

Kuyucak, N., Volesky, B. New algal biosorbent for a gold recovery process. Biohydrometallurgy. Proceedings of the Int. Symposium, 453–464.

Manoj Kumar Tiwari et al.,., 2016 “Air and Leaching Pollution Scenario by Iron and Steel Plants in central India”, Elixir international journal Pollution 101 44011 -44017 44011

Mattuschka, B., Junghaus, K., Straube, G. 1993. Biosorption of metals by waste biomass. Biohydromettallurgical Technol., 2: 125–132.

Metals: Investigations on the Effect Of Steel Industry Effluent in the Urbanised Location. Int. J. Adv. Eng. Res. Stud., 1 (II), 235–239.

Nagaswa and Kanaura , 1992, Ibid. pp. 385-397

Narendra Kumar Ahirwar , Govind Gupta , Vinod Singh 2013 Biodegradation of Chromium Contaminated Soil by Some Bacterial Species Inter. J of Sci and Res

Nemec, P., Prochazka, H., Stamberg, K., Katzer, J., Stamberg, J., Jilek, R., Hulak,P. 1977. Process of treating mycelia of fungi for retention of metals. U.S.Patent, 4: 021–368.

Niu, H., Xu, X.S., Wang, J.H., Volesky, B. 1993. Removal of lead from aqueous solutions by Penicillum biomass. Biotechnol. Bioenerg., 42: 785–787

Omkar A Shinde, Ankita Bansal, Angela Banerjee and Supriya Sarkar 2018 Bioremediation of steel plant waste water and enhanced electricity generation in microbial desalination cell. Water and science technology.

Pallabi das, Gautam C. Mondal, Siddharth Singh, Abhay K. Singh, Bably Prasad1, Krishna K. Singh 2018 Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review Water environment research

Pamukoglu MY, Kargi F 2007 Copper (II) ion toxicity in activated sludge processes as function of operating parameters. Enzy Microb Technol 40:1228–1233

Petrasek AC, Kugelman IJ 1983 Metal removals and partitioning in conventional wastewater treatment plants. J Wat Poll Cont Fed 55:1183–1190

Qiao Ma, Yuanyuan Qu, (2015) Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing Bioresource Technology

Ram singh (2016) Production of Steel, Applied welding engineering (second edition), pg no 37-55

Saha, S.; Chandran, T. J. (2001) Removal of Fluoride From the Salem Steel Plant Effluent. Ind. J. Environ. Prot., 21 (7), 627–630.

Satish, S.; Chandra H., Sar, S. K.; Bhui, A. K. (2012) Environmental Sinks of Heavy

Sinha Sanjeev Kumar, Vikas Kumar Sinha, Kr Samir, Pandey, Anup Tiwari (2014). “A Study on the Waste Water Treatment Technology for Steel Industry: Recycle And Reuse,” American Journal of Engineering Research (AJER) Vol. 03, Issue-04, pp. 309-315

Springael, D., Diets, L., Hooyberghs, L., Krepsk, S., Mergeay, M. (1993). Construction and Characterization of heavy metal resistant halo aromatic degrading Alcaligenes eutrophs strains. Appl. Environ. Microbiol., 59: 334–339.

Tobin, J.M., Cooper, D.G., Neufeld, R.J. 1984. Uptake of metal ions by Rhizopus arrihus biomass. Appl. Environ. Microbiol., 47: 821–824.

Townsley, C.C., Ross, I.S., Atkins, A.S. 1986. Biorecovery of metallic residues from various industrial effluents using filamentous fungi. Fundamental and applied Bio Hydro Metallurgy; Lawrence R.W., Branion, R.M.R., Ebner, H.G., Eds; Elsevier: Amsterdam, 279–289.

Valentina V, Umrania: “Bioremediation of toxic heavy metals using acidothermophilic autotrophies,” ElSEVIER, Bio source technology 97(2006), 2005, pp. 1237-1242

Víctor MLuque-Almagro, Conrado Moreno-Vivián María Dolores Roldán, (2016) Biodegradation of cyanide wastes from mining and jewellery industries Current Opinion in Biotechnology Volume 38, Pages 9-13

Volesky, B. 1986. Biotechnological Bioenergy symptoms. Biosorbent Materials, 121– 126.

Xingjian Xu, Wenming Liu et.al, “Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis” Frontiers in Microbiology Volume 9 | Article 2885

Downloads

Published

2021-12-31

How to Cite

Aarthi, & D, J. (2021). Environmental impact on heavy metals and conventional effluent treatment methodologies in steel industrial waste – A review: Environmental impact on heavy metals and conventional effluent treatment methodologies in steel industrial waste – A review. International Journal of Life Sciences, 9(4), 455–460. Retrieved from https://ijlsci.in/ls/index.php/home/article/view/526