Anti-Cancerous Effect of Phytochemical Compound (Lectin) on A549 and NCI-H929 Cancer Cell Lines by Cytotoxicity Assay
Keywords:
: Euphorbia tithymaloide,, apoptosis, necrosis, caspase 3, A549 cell line, NCI-H929 cell line, MTT assay, Cytotoxicity, Lectins, Anti-cancerous propertiesAbstract
Cancer is one of the leading reasons of death, worldwide. Cancer is a deadly disease, where the abnormal behaviour of a single cell type is challenging to treat via chemotherapy. It is essential in cancer therapy that the remedy targets only the affected cells, leaving the unaffected cells undisturbed, which is quite difficult, especially in chemotherapy. Anti-cancer drugs reachable in the modern-day market are not target-specific and elicit countless side-effects and issues encountered in the scientific management of a number of forms of cancer, which highlights the pressing need for novel effective and less-toxic therapeutic approaches. Recently, centre of attention has shifted from the usage of lectins to diagnose cancer to actually using lectins to combat cancer.
Evidence is now emerging that lectins are dynamic contributors to tumour cell recognition (surface markers), cell adhesion and localization, signal transduction throughout membranes, mitogenic stimulation, augmentation of host immune defence, cytotoxicity, and apoptosis. In this study we have extracted lectin from plant Euphorbia Tithymaloide (ET). The predominant objective of this project is to check the anti-cancer property of lectins extracted from ET on A549 and NCI-H929 cell lines and a comparative analysis and confirmatory research of its cytotoxicity on these both cells lines.
Downloads
References
Adan A., Baran Y. (2015). The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol. 36, 8973–8984. 10.1007/s13277-015-3597-6 [PubMed] [CrossRef] [Google Scholar]
Akindele A. J., Wani Z. A., Sharma S., Mahajan G., Satti N. K., Adeyemi O. O., et al. . (2015). In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid. Based Complement. Alternat. Med. 2015, 1–11. 10.1155/2015/560404 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al Sinani S. S., Eltayeb E. A., Coomber B. L., Adham S. A. (2016). Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int. 16, 11. 10.1186/s12935-016-0287-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al-Taweel A. M., Perveen S., Fawzy G. A., Ibrahim G. A., Khan A., Mehmood R. (2015). Cytotoxicity assessment of six different extracts of Abelia triflora leaves on A-549 human lung adenocarcinoma cells. Asian Pac. J. Cancer Prev. 16, 4641–4645. 10.7314/APJCP.2015.16.11.4641 [PubMed] [CrossRef] [Google Scholar]
American Cancer Society (2016). Cancer Facts & Figures 2016. Atlanta, GA: American Cancer Society. [Google Scholar]
Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N. What should be called a lectin. Nature. 1980;285:66. doi: 10.1038/285066b0. [CrossRef] [Google Scholar]
Fujita T. Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol. 2002;2:346–353. doi: 10.1038/nri800. [PubMed] [CrossRef] [Google Scholar]
Sharon N, Lis H. Lectins as cell recognition molecules. Science. 1989;246:227–234. doi: 10.1126/science.2552581. [PubMed] [CrossRef] [Google Scholar]
Mody R, Joshi SH, Chaney W. Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods. 1995;33:1–10. doi: 10.1016/1056-8719(94)00052-6. [PubMed] [CrossRef] [Google Scholar]
Slifkin M, Doyle RJ. Lectins and their application to clinical microbiology. Clin Microbiol Rev. 1990;3:197–218. [PMC free article] [PubMed] [Google Scholar]
Ogawa T., Watanabe M., Naganuma T., Muramoto K. (2011) Diversified carbohydrate-binding lectins from marine resources. J Amino Acids 2011 [PMC free article] [PubMed]
Reyes-Lopez CA, Hernandez-Santoyo A, Pedraza-Escalona M, Mendoza G, Hernandez-Arana A, Rodriguez-Romero A. Insights into a conformational epitope of Hev b 6.02 (hevein) Biochem Biophys Res Commun. 2004;314:123–130. doi: 10.1016/j.bbrc.2003.12.068. [PubMed] [CrossRef] [Google Scholar]
Naismith J.H., Emmerich C., Habash J., Harrop S.J., Helliwell J.R., Hunter W.N., et al. Refined structure of concanavalin A complexed with methyl alpha-D-mannopyranoside at 2.0 A resolution and comparison with the saccharide-free structure. Acta crystallographica. Section D, Biol crystallogr. 1994;50:847–858. [PubMed] [Google Scholar]
Adan A., Baran Y. (2015). The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol. 36, 8973–8984. 10.1007/s13277-015-3597-6 [PubMed] [CrossRef] [Google Scholar]
Akindele A. J., Wani Z. A., Sharma S., Mahajan G., Satti N. K., Adeyemi O. O., et al. . (2015). In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid. Based Complement. Alternat. Med. 2015, 1–11. 10.1155/2015/560404 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al Sinani S. S., Eltayeb E. A., Coomber B. L., Adham S. A. (2016). Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int. 16, 11. 10.1186/s12935-016-0287-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al-Taweel A. M., Perveen S., Fawzy G. A., Ibrahim G. A., Khan A., Mehmood R. (2015). Cytotoxicity assessment of six different extracts of Abelia triflora leaves on A-549 human lung adenocarcinoma cells. Asian Pac. J. Cancer Prev. 16, 4641–4645. 10.7314/APJCP.2015.16.11.4641 [PubMed] [CrossRef] [Google Scholar]
American Cancer Society (2016). Cancer Facts & Figures 2016. Atlanta, GA: American Cancer Society. [Google Scholar]
Adan A., Baran Y. (2015). The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol. 36, 8973–8984. 10.1007/s13277-015-3597-6 [PubMed] [CrossRef] [Google Scholar]
Akindele A. J., Wani Z. A., Sharma S., Mahajan G., Satti N. K., Adeyemi O. O., et al. . (2015). In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid. Based Complement. Alternat. Med. 2015, 1–11. 10.1155/2015/560404 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al Sinani S. S., Eltayeb E. A., Coomber B. L., Adham S. A. (2016). Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int. 16, 11. 10.1186/s12935-016-0287-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al-Taweel A. M., Perveen S., Fawzy G. A., Ibrahim G. A., Khan A., Mehmood R. (2015). Cytotoxicity assessment of six different extracts of Abelia triflora leaves on A-549 human lung adenocarcinoma cells. Asian Pac. J. Cancer Prev. 16, 4641–4645. 10.7314/APJCP.2015.16.11.4641 [PubMed] [CrossRef] [Google Scholar]
American Cancer Society (2016). Cancer Facts & Figures 2016. Atlanta, GA: American Cancer Society. [Google Scholar]
Adan A., Baran Y. (2015). The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks. Tumor Biol. 36, 8973–8984. 10.1007/s13277-015-3597-6 [PubMed] [CrossRef] [Google Scholar]
Akindele A. J., Wani Z. A., Sharma S., Mahajan G., Satti N. K., Adeyemi O. O., et al. . (2015). In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid. Based Complement. Alternat. Med. 2015, 1–11. 10.1155/2015/560404 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al Sinani S. S., Eltayeb E. A., Coomber B. L., Adham S. A. (2016). Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int. 16, 11. 10.1186/s12935-016-0287-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Al-Taweel A. M., Perveen S., Fawzy G. A., Ibrahim G. A., Khan A., Mehmood R. (2015). Cytotoxicity assessment of six different extracts of Abelia triflora leaves on A-549 human lung adenocarcinoma cells. Asian Pac. J. Cancer Prev. 16, 4641–4645. 10.7314/APJCP.2015.16.11.4641 [PubMed] [CrossRef] [Google Scholar]
American Cancer Society (2016). Cancer Facts & Figures 2016. Atlanta, GA: American Cancer Society. [Google Scholar]
Liu B., Li C.Y., Bian H.J., Min M.W., Chen L.F., Bao J.K. Antiproliferative activity and apoptosis-inducing mechanism of Concanavalin A on human melanoma A375 cells. Arch. Biochem. Biophys. 2009;482:1–6. doi: 10.1016/j.abb.2008.12.003. [PubMed] [CrossRef] [Google Scholar]
Rahul S. Adnaik, Vyankatesh R. Dharanguttikar, Swapnali A. Thorat, Pratibha R. Adnaik, Prajakta D. Nayakal and Sanket S. Patil, 2020. In-silico Evaluation of Wound Healing Potential of Euphorbia tithymaloides. Research Journal of Medicinal Plants, 14: 133-143.
Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996; 87(2):171. (Biology)
Dai C, Krantz SB. Interferon gamma induces upregulation and activation of caspases 1, 3, and 8 to produce apoptosis in human erythroid progenitor cells. Blood. 1999; 93(10):3309-3316. (Biology)
Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994; 269(49):30761-30764. (Biology)
Fujita N, Tsuruo T. Involvement of Bcl-2 cleavage in the acceleration of VP-16-induced U937 cell apoptosis. Biochem Biophys Res Commun. 1998; 246(2):484-488. (Biology)
Jänicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998; 273(16):9357-9360. (Biology)
Miossec C, Dutilleul V, Fassy F, Diu-Hercend A. Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation. J Biol Chem.1997; 272(21):13459-13462. (Biology)
Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB J. 1996; 10(5):587-597. (Biology)
Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli K, Debatin K, Krammer P, Peter M.. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675-1687. (Biology)
Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998; 281(5381):1312-1316. (Biology)
Casciola-Rosen L, Rosen A, Petri M, Schlissel M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1996; 93(4):1624-1629.
Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D. Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood. 1995; 85(2):532-540.
Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994; 84(5):1415-1420.
Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995; 182(5):1545-1556.
O'Brien MC, Bolton WE. Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry. Cytometry. 1995; 19(3):243-255.
Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994; 1197(1):63-93.
Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV. Dead cell discrimination with 7-amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992; 13(2):204-208.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Chandini Sayed, Aneeta Blesna, Shefali Raizada
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/