Microbial exopolysaccharides and their potential applications.

Authors

  • Baishali Pandit Baishali Pandit Surendranath College, University of Calcutta

Keywords:

EPS, macromolecules, natural polymers, pharmacological, nutraceutical, immunomodulation

Abstract

Exopolysaccharides (EPS) are organic macromolecules produced by various microorganisms throughout the fermentation process from diverse carbon sources and released beyond the cell wall as slime or into the extracellular media as a jelly-like substance. Polymerization of simple or identical building components, which may be organized as repeating units within polymer molecules, produces EPS. EPSs are hypothesized to protect cells against desiccation, poisonous chemicals, bacteriophages, osmotic stress, allow attachment to solid surfaces, and aid in the production of biofilms. The rising need for natural polymers for industrial uses has drawn a lot of attention to EPS in recent years. Exopolysaccharides' material features, which include a plethora of functional uses and possibilities, have transformed the industrial and medicinal industries. Pharmacological, nutraceutical, functional food, cosmeceutical, herbicides, and insecticides are only a few of the applications of microbial exopolysaccharides, with anticoagulant, antithrombotic, immunomodulation, anticancer, and bioflocculant applications on the horizon.

Keywords – EPS, macromolecules, natural polymers, pharmacological, nutraceutical, immunomodulation.

Downloads

Download data is not yet available.

References

Allison DG, Sutherland IW (1987) The role of exopolysaccharides in adhesion of fresh water bacteria. J Gen Microbiol, 133: 1319-1327.

Aparna SV, Shah N, Patel A (2013) Lactic acid bacteria as metal quenchers to improve Food safety and quality. Technical article published in souvenir of Innovations in Dairy Industry organised by SMC college of Dairy Science, AAU, Anand, Gujarat, India.

Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, et al. (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett, 123: 132-137.

Baruah R, Das D, Goyal A (2016) Heteropolysaccharides from Lactic Acid Bacteria: Current Trends and Applications. J Prob Health, 4: 141. doi:10.4172/2329-8901.1000141

Becker A, Katzen F, Pühler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol, 50: 145-152.

Broadbent JR, McMahon DJ, Welker DL, et al. (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci., 86(2): 407–423.

Choi SB, Yun YS (2006) Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J Hazard Mater., 138(2): 378–383.

Colliec-Jouault S, Chevolot L, Helley D, Ratiskol J, Bros A, et al. (2001) Characterization, chemical modifications and Invitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim Biophys Acta, 1528: 141-151.

Cosa S, Mabinya LV, Olaniran OA, Okoh OO, Bernard K, et al. (2011) Bioflocculant Production by VirgiBacillus sp. Rob Isolated from the Bottom Sediment of Algoa Bay in the Eastern Cape, South Africaca. Molecules, 16: 2431-2442.

Crescenzi V (1995) Microbial polysaccharides of applied interest: Ongoing research activities in Europe. Biotechnol Prog, 11: 251-259.

Daba AS, Ezeronye OU (2003) Anti–cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. African Journal of Biotechnology, 2(12) :672–678.

Dave SR, Vaishnav AM, Upadhyay KH, et al. (2016) Microbial exopolysaccharide - an inevitable product for living beings and environment. J Bacteriol Mycol, 2(4): 109‒111. DOI: 10.15406/jbmoa.2016.02.00034

De Palencia FP, Werning ML, Sierra-Filardi E, Duenas MT, Irastorza A, et al. (2009) Probiotic properties of the 2-substituted (1,3)-D-glucan-producing bacterium Pediococcus parvulus. Appl Environ Microbiol, 2 (6): 4887-4891.

de Valdez GF, de Giori GS, de Ruiz Holgado AP, Oliver G ( ٴ و) ( 1985 ect of drying medium on residual moisture content and viability of freeze-dried lactic Acid bacteria. Appl Environ Microbiol, 49: 413-415.

De Vuyst L and Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177. doi: 10.1111/j.1574- 6976.1999.tb00395.x

Di Cagno R, De Angelis M, Limitone A, Minervini, P. Carnevali, A. Corsetti, M. Gänzle, R. Ciati, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and LactoBacillus plantarum. J Agric Food Chem, 54: 9873-9881.

Di Cagno R, De Pasquale I, De Angelis M, Buchin S, Rizzello CG and Gobbetti M (2014) Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese. J. Dairy Sci, 97: 72–84. doi: 10.3168/jds.2013-7078

Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, et al. (2015) Characterization of an exopolysaccharide with potential health benefit properties from aprobiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol, 1179-1186.

Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. International Dairy Journal, 11(9): 759–768.

Dudman WF (1977) In: Sutherland I (Ed) Surface carbohydrates of the prokaryotic cell. Academic press New York pp: 357-414

Escalante A, Giles-Gómez M, Hernández G, Córdova-Aguilar MS, LópezMunguía A, Gosset G, et al (2008) Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. Int. J. Food. Microbiol., 124: 126–134. doi: 10.1016/j.ijfoodmicro.2008.03.003

Faber EJ, Kamerling JP, Vliegenthart JF (2001) Structure of the extracellular polysaccharide produced by LactoBacillus delbrueckii subsp. bulgaricus 291. Carbohydr Res, 331: 183-194

Galle S, Schwab C, Arendt E, Ganzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58: 5834-5841.

Galle S, Schwab C, Arendt EK, and Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol., 28: 547–553. doi: 10.1016/j.fm.2010.11.006

Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG and Arendt EK (2012). Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int. J. Food Microbiol., 155: 105–112. doi: 10.1016/j.ijfoodmicro.2012.01.009

Hassan AN, Corredig M, Frank JF, and Elsoda M (2004). Microstructure and rheology of an acid-coagulated cheese (Karish) made with an exopolysaccharide-producing Streptococcus thermophilus strain and its exopolysaccharide non-producing genetic variant. J. Dairy Res., 71: 116–120. doi: 10.1017/S0022029903006605

Hernández LJ, Arrieta C, Menéndez R, Vazquez A, Coego V, et al. (1995) Isolation and enzymic properties of levan sucrase secreted by Acetobacter diazotrophicus SRT4 a bacterium associated with sugar cane. Biochemistry Journal, 309: 113-118.

Hidalgo Cantabrana C, López P, Gueimonde M, et al. (2012) Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob Proteins., 4(4): 227–237.

Kitazawa H, Yamaguchi T and Itoh T (1992) B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. J Dairy Sci, 75: 2946-2951.

Korakli M, Gänzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by LactoBacillus sanfranciscensis. J Appl Microbiol, 92: 958-965.

Kulicke WM, Heinze T (2005) Improvements in Polysaccharides for use as Blood Plasma Expanders. Macromol Symp, 231: 47-59. 20.

Franz G (1986) Polysaccharides in pharmacy. Adv Polymer Sci, 76: 1-30

Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides--a perception. Journal of Basic Microbiology, 47: 103-117.

Kumar AS, Mody K (2009) Microbial exopolysaccharides: variety and potential applications. Microbial production of biopolymers and polymer precursors: applications and perspectives, 229-253.

Mabinya VL, Cosa S, Nwodo UU and Okoh AI (2012) Studies on bioflocculant production by Arthrobacter sp Raats a freshwater bacteria isolated from Tyume River South Africa. Int J Mol Sci, 13: 1054-1065.

Martin SA, Karnovsky ML, Krueger JM, Pappenheimer JR, Biemann K (1984) Peptidoglycans a promotors of slow-wave sleep I Structure of the sleep promoting factor isolated from human urine. J Biol Chem, 259: 12659-12662

Nagaoka M, Hashimoto S, Watanabe T, Yokokura T, Moro Y (1994) Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides. Biol Pharm Bull, 17: 1012–1017.

Nakajima H, Hirota T, Toba T, Itoh T, Adachi S (1992) Structure of the extracellular polysaccharide from slime-forming Lactococcus Lactis subsp cremoris SBT 0495. Carbohydr Res, 224: 245–253.

Nicolaus B, Kambourova M, Oner ET. (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol., 31(10):1145–1158.

Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci., 13(11): 14002–14015.

Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol., 102(2): 143–152.

Palomba S, Cavella S, Torrieri E, Piccolo A, Mazzei P, Blaiotta G, et al. (2012) Polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat Sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. Appl. Environ. Microbiol., 78: 2737–2747. doi: 10.1128/AEM.07302-11

Patel A, Prajapati JB (2013) Food and Health Applications of Exopolysaccharides produced by Lactic acid Bacteria. Adv Dairy Res, 1: 107. doi: 10.4172/2329-888X.1000107

Poli A, Di Donato P, Abbamondi GR, et al. (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea., 69(3): 253.

Qin G, Zhu L, Chen X, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp SM9913. Microbiology, 153: 1566-1572.

Quesada E, Béjar V, Calvo C (1993) Exopolysaccharide production by Volcaniella eurihalina. Experientia., 49(12): 1037–1041.

Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nature Rev Microbiol., 8(8): 578–592.

Russell RR (1990) Molecular genetics of glucan metabolism in oral streptococci. Archives of Oral Biology, 35: 53S-58S.

Rodríguez C, Medici M, Rodríguez AV, Mozzi F, Font de Valdez G (2008) Prevention of chronic gastritis by fermented milks made with exopolysaccharide producing Streptococcus thermophilus strains. J Dairy Sci, 92: 2423-2434.

Rühmkorf C, Ruebsam H, Becker T, Bork C, Voiges K, Mischnick P, et al. (2012) Effect of structurally different microbial homoexopolysaccharides on the quality of gluten-free bread. Eur. Food Res. Technol., 235, 139–146. doi: 10.1007/s00217-012-1746-3

Salazar N, Gueimonde M, Hernandez-Barranco AM, Ruas-Madiedo P, de los Reyes-Gavilan CG (2008) Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Applied and Environmental Microbiology, 74: 4737-4745.

Schwab C, Mastrangelo M, Corsetti A, and Gänzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem. J., 85, 679–684. doi: 10.1094/CCHEM-85-5-0679

Shah N, Prajapati JB (2013) Effect of carbon dioxide on sensory attributes, physico-chemical parameters and viability of Probiotic L. helveticus MTCC 5463 in fermented milk. J Food Sci Technol.

Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol., 16(1):41–46.

Sutherland IW. (1983) Extracellular polysaccharides. In: Rehm HJ, Reed G, editors. “Biotechnology: Biomass, Microorganisms for special applications, Microbial products I, Energy from renewable resources. Germany: Verlag Chemie, Gmbh D–6940; p. 531–574.

Torino M, Font de Valdez G and Mozzi F (2015) Biopolymers from lactic acid bacteria. Novel applications in foods and beverages. Frontiers in Microbiology, doi: 10.3389/fmicb.2015.00834

Trancoso-Reyes N, Gutiérrez-Méndez N, Sepulveda DR, and HernándezOchoa LR (2014) Assessing the yield, microstructure, and texture properties of miniature Chihuahua-type cheese manufactured with a phospholipase A1 and exopolysaccharide-producing bacteria. J. Dairy Sci., 97, 598–608. doi: 10.3168/jds.2013-6624

Tabibloghmany FS, Ehsandoost E (2014) An overview of healthy and functionality of exopolysaccharides produced by lactic acid bacteria in the dairy industry. European Journal of Food Research & Review., 4(2): 63–86.

Tamime AY, Saarela M, Søndergaard AK, Mistry VV, Shah NP (2005) Production and maintenance of viability of probiotic micro-organisms in dairy products. In: Probiotic Dairy Products Blackwell: Oxford 39-72.

Tsuda H, Hara K, Miyamoto T (2008) Binding of mutagens to exopolysaccharide produced by LactoBacillus plantarum mutant strain 301102S. J Dairy Sci, 91: 2960-2966.

Vanhooren PT, Vandamme EJ (2000) Microbial production of clavan an L-fucose rich exopolysaccharide In: Food Biotechnology (Bielecki S Tramper J and Polak J eds) Elsevier Science BV Amsterdam The Netherlands, pp 109-114.

Vanhooren P, Vandamme EJ (1998) Biosynthesis physiological role use and fermentation process characteristics of bacterial exopolysaccharides. Recent research developments in fermentation and bioengineering, 1: 253-299.

Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M, Swings J, et al. (2004) Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol., 70, 900–912. doi: 10.1128/AEM.70.2.900-912.2004

van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, et al. (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 82: 187-216.

van Kranenburg R, Boels IC, Kleerebezem M, de Vos WM (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Current Opinion in Biotechnology, 10: 498-504.

Wang Y, Ahmed Z, Feng W, Li C, and Song S (2008) Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J. Biol. Macromol., 43, 283–288. doi: 10.1016/j.ijbiomac.2008.06.011

Wang W, Zhang L, and Li Y (2012) Production of volatile compounds in reconstituted milk reduced-fat cheese and the physicochemical properties as affected by exopolysaccharide-producing strain. Molecules, 17, 14393–14408. doi: 10.3390/molecules171214393

Wang J, Zhao X, Tian Z, He C, Yang Y, et al. (2015) Isolation and Characterization of exopolysaccharide-producing Lactobacillus plantarum SKT109 from Tibet .efir. Polish J Food Nutri Sci, 269-280.

Whistler R, Daniel JR (1990) Functions of polysaccharides in foods. In: Food Additives eds Branen AL Davidson PM & Salminen S, Marcel Dekker Inc New York 395-423.

Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol, 34: 415-420.

Wingender J, Neu TR, Flemming HC (2012) Microbial extracellular polymeric substances: characterization, structure and function. Germany: Springer Science & Business Media, 258 p

Wolter A, Hager AS, Zannini E, Galle S, Gänzle MG, Waters DM, et al. (2014a) Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol., 37, 44–50. doi: 10.1016/j.fm.2013.06.009

Wolter A, Hager AS, Zannini E, Czerny M, and Arendt EK (2014b) Influence of dextran-producing Weissella cibaria on baking properties and sensory profile ofgluten-free and wheat breads. Int. J. Food Microbiol., 172, 83–91. doi: 10.1016/j.ijfoodmicro.2013.11.015

Xu Q, Yajima T, Li W, Saito K, Ohshima Y, et al. (2006) Levan (beta2, 6-fructan), a major fraction of fermented soybean mucilage, displays immunostimulating properties via Toll-like receptor 4 signalling: induction of interleukin-12 production and suppression of T-helper type 2 response and immunoglobulin E production. Clin Exp Allergy, 36: 94-101.

Yamamoto Y, Takahashi Y, Kawano M, Iizuka M, Matsumoto T, Saeki S, Yamaguchi H (1999) In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. J Nutr Biochem, 10: 13-18.

Yun JW (1996) Fructooligosaccharides—Occurrence, preparation, and application. Enz Microb Technol, 19: 107-117.

Yu RL, Yang OU, Tan JX, et al. (2011) Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces. Transactions of Nonferrous Metals Society of China., 21(2):407–412.

Downloads

Published

2022-05-29

How to Cite

Baishali Pandit, B. P. (2022). Microbial exopolysaccharides and their potential applications. International Journal of Life Sciences, 10(2), 151–160. Retrieved from https://ijlsci.in/ls/index.php/home/article/view/618