Chlorella: Abundance, Applications, and Prospects of CO2 Fixation - A North East India Perspective

Authors

  • RHEA DHAR NORTH-EASTERN HILL UNIVERSITY
  • MOIRANGTHEM BIDYASWORI DEVI
  • DIBYENDU PAUL

Keywords:

Chlorella, CO2 sequestration, North East India, Sustainable energy

Abstract

Chlorella, a green microalga has drawn a lot of interest because of its rapid growth, rich nutritional profile, and ability to treat wastewater and fix carbon dioxide. The review emphasizes the unique habitats where Chlorella has been reported in North East India and successful cultivation techniques demonstrating its biochemical and phycoremediation properties and lipid productivity. Chlorella has shown enormous promise in carbon dioxide fixation, environmental restoration, and renewable energy, and the factors that play a significant role in Chlorella’s capacity to absorb carbon dioxide are highlighted here. Studies conducted from NE India revealed the region’s significant reservoir of Chlorella and highlight the potential of this region as a promising hub for future exploration and utilization to produce sustainable energy and mitigate the increase in carbon dioxide concentrations.

Downloads

Download data is not yet available.

References

Acharjee B, Laskar SB and Choudhury AH (2021) Diversity analysis of phytoplankton community in relation to physicochemical characteristics of Chatla floodplain lake of district Cachar, Assam, North East India. Uttar Pradesh Journal of Zoology, 42(24): 672-682. Retrieved from https://mbimph.com/index.php/UPJOZ/article/view/2766.

Aleya L, Dauta A and Reynolds CS (2011) Endogenous regulation of the growth-rate responses of a spring-dwelling strain of the freshwater alga, Chlorella minutissima, to light and temperature. European Journal of Protistology, 47(4): 239–244. doi: 10.1016/j.ejop.2011.05.003.

Anguselvi V, Masto RE, Mukherjee A, Singh PK (2019) CO2 Capture for Industries by Algae In Algae, Eds., Wong Y.K. IntechOpen, pp: 70. doi: 10.5772/intechopen.81800.

Awasthi M (2021) Distribution of Phytoplankton and Periphyton in the Shallow Rice-Fish Fields of Arunachal Pradesh, India. International Journal on Algae, 23: 223-236. doi: 10.1615/InterJAlgae.v23.i3.20.

Balasubramaniam V, Gunasegavan RDN, Mustar S, Lee JC, Mohd Noh MF (2021) Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules, 26(4): 943. doi: 10.3390/molecules26040943.

Barahoei M, Hamatipour MS and Afsharzadeh S (2020) CO2 capturing by Chlorella vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. Journal of CO2 Utilization, 37: 9-19. doi: 10.1016/j.jcou.2019.11.023.

Barati B, Fazeli Zafar F, Amani Babadi A, Hao C, Qian L, Wang S, Abomohra AE-F (2022) Microalgae as a Natural CO2 Sequester: A Study on Effect of Tobacco Smoke on Two Microalgae Biochemical Responses. Frontiers in Energy Research, 10: 881758. doi: 10.3389/fenrg.2022.881758.

Barman D, Deka SJ and Barman B (2015) Seasonal Diversity and Habitat characteristics of Algae of Wetlands in the West Garo Hill, Meghalaya, India. Research Journal of Recent Sciences, 4(ISC-2014): 274-279.

Baruah PP, Boruah B, Nath S, Kalita H, Bhattacharjee S (2020) Algal diversity in Deepor Beel of Assam: a Ramsar site of North East India. Nelumbo, 62(2): 221-252. doi: 10.20324/nelumbo/v62/2020/153155.

Basu S, Roy AS, Mohanty K, Ghosal AK (2014) CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. Bioresource Technology, 164: 323-330. doi: 10.1016/j.biortech.2014.05.017.

Batista AP, Ambrosano L, Graça S, Sousa C, Marques PA, Ribeiro B, Botrel EP, Neto PC, Gouveia L (2015) Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresource Technology, 184: 230-235. doi: 10.1016/j.biortech.2014.10.064.

Bharati H, Deshmukhe G, Das SK, Kandpal BK, Sahoo L, Bhusan S, Singh YJ (2020) Phytoplankton communities in Rudrasagar Lake, Tripura (North-East India) – A Ramsar Site. International Journal of Bio-resources and Stress Management, 11(1): 001-007. doi: 10.23910/IJBSM/2020.11.1.2030.

Bhola V, Swalaha F, Ranjith Kumar R, Singh M, Bux F (2014) Overview of the potential of microalgae for CO2 sequestration. International Journal of Environmental Science and Technology, 11: 2103-2118. doi: 10.1007/s13762-013-0487-6.

Bora A, Gogoi HK and Veer V (2016) Algal Wealth of Northeast India. In Bioprospecting of Indigenous Bioresources of North-East India, Eds., Purkayastha, J. Springer, Singapore. doi: 10.1007/978-981-10-0620-3_13.

Bora A, Purkayastha J, Gogoi HK, Singh L (2011) Current and Prospective Competence of Agro-waste and Biomass Feedstock in North Eastern India with Special Emphasis to Alternative energy Source. South Asian journal of Experimental Biology, 1(1): 9-15. doi: 10.38150/sajeb.1(1).p9-15.

Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh NN, Bhattacharjee CR (2020) Alga-mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Applied Organometallic Chemistry, 34: e5597. doi: 10.1002/aoc.5597.

Brennan L and Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2): 557-577. doi: 10.1016/j.rser.2009.10.009.

Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184: 190-201. doi: 10.1016/j.biortech.2014.11.026.

Chen H and Wang Q (2020) Microalgae-based nitrogen bioremediation. Algal Research, 46: 101775. doi: 10.1016/j.algal.2019.101775.

Chen WH, Huang MY and Chen CY (2014) Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology, 169: 258-264. doi: 10.1016/j.biortech.2014.06.086.

Clément-Larosière B, Lopes F, Gonçalves A, Taidi B, Benedetti M, Minier M, Pareau D (2014) Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities. Engineering in Life Sciences, 14(5): 509-519. doi: 10.1002/elsc.201200212.

Costa JAV, Linde GA, Atala DIP, Mibielli GM, KruÈger RT (2000) Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World Journal of Microbiology & Biotechnology, 16: 15-18. doi: 10.1023/A:1008992826344.

Das B and Deka S (2019) A cost-effective and environmentally sustainable process for phycoremediation of oil field formation water for its safe disposal and reuse. Scientific Reports, 9: 15232. doi: 10.1038/s41598-019-51806-5.

Devgoswami RC, Kalita MC, Talukdar J, Bora R, Sharma P (2011) Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African Journal of Biotechnology,10: 13128–13138. doi: 10.5897/AJB11.888.

Dirborne CM and Ramanujam P (2017) Diversity and ecology of soil algae in broadleaf sacred grove and pine forest in East Khasi Hills, Meghalaya. Nelumbo, 59(2): 195-212. doi: 10.20324/nelumbo/v59/2017/120460.

Febrieni VN, Sedjati S and Yudiati E (2020) Optimization of light intensity on growth rate and total lipid content of Chlorella vulgaris. IOP Conference Series: Earth and Environmental Science, 584: 012040. doi: 10.1088/1755-1315/584/1/012040.

Gani P, Sunar NM, Matias-Peralta H, Latiff AAA, Parjo UK, Razak ARA (2015) Phycoremediation of Wastewaters and Potential Hydrocarbon from Microalgae: A Review. Advances in Environmental Biology, 9(20): 1-8.

Ganie, PA, Baruah D, Kunal K, Posti R, Garima, Sarma D (2018) Phytoplankton diversity and abundance in upland streams of Kameng drainage, Arunachal Pradesh. Journal of Entomology and Zoology Studies, 6(6): 1166-1173.

Gao K, Xue C, Yang M, Li L, Qian P, Gao Z, Deng X (2022) Optimization of light intensity and photoperiod for growing Chlorella sorokiniana on cooking cocoon wastewater in a bubble-column bioreactor. Algal Research, 62: 102612. doi: 10.1016/j.algal.2021.102612.

Ghosh A, Khanra S, Mondal M, Devi TI, Halder G, Tiwari ON, Bhowmick TK, Gayen K (2017) Biochemical characterization of microalgae collected from north east region of India advancing towards the algae-based commercial production. Asia-Pacific Journal of Chemical Engineering, 12(5): 745-754. doi: 10.1002/apj.2114.

Gong Q, Feng Y, Kang L, Luo M, Yang J (2014) Effects of light and pH on cell density of Chlorella vulgaris. Energy Procedia, 61: 2012-2015. doi: 10.1016/j.egypro.2014.12.064.

Goswami RCD and Kalita MC (2012) Microalgal resources in Chandrapur area, North-East, Assam, India: A perspective for Industrial refinement system and a boon for alternative energy generation and mitigation of greenhouse gases. Archives of Applied Science Research, 4(2):795-799.

Gunawan TJ, Ikhwan Y, Restuhadi F, Pato U (2018) Effect of light intensity and photoperiod on growth of Chlorella pyrenoidosa and CO2 Biofixation. In the “2nd International Conference on Energy, Environmental and Information System” (ICENIS 2017), E3S Web of Conferences, 31: 03003. doi: 10.1051/e3sconf/20183103003.

Han F, Wang W, Li Y, Shen G, Wan M, Wang J (2013) Changes of biomass, lipid content and fatty acids composition under a light–dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. Bioresource Technology, 132: 182–189. doi: 10.1016/j.biortech.2012.12.175.

Hodač L, Hallmann C, Spitzer K, Elster J, Faßhauer F, Brinkmann N, Lepka D, Diwan V, Friedl T (2016) Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Mircobiology Ecology, 92(8): 1-16. doi: 10.1093/femsec/fiw122.

Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology, 101(4): 1406-1413. doi: 10.1016/j.biortech.2009.09.038.

Juneja A, Ceballos RM and Murthy GS (2013) Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies, 6(9): 4607-4638. doi: 10.3390/en6094607.

Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technology 166: 485-493. doi: 10.1016/j.biortech.2014.05.094.

Kaur S, Sarkar M, Srivastava RB, Gogoi HK, Kalita MC (2012) Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. New Biotechnology, 29(3): 332-344. doi: 10.1016/j.nbt.2011.10.009.

Khalili A, Najafpour GD, Amini G, Samkhaniyani F (2015) Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris. Biotechnology and Bioprocess Engineering, 20: 284–290. doi: 10.1007/s12257-013-0845-8.

Kharkongor D and Ramanujam P (2014) Diversity and Species Composition of Subaerial Algal Communities in forested Areas of Meghalaya, India. Journal of Biodiversity, 2014: 456202. doi: 10.1155/2014/456202.

Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8): 4945-4953. doi: 10.1016/j.biortech.2011.01.054.

Kumar PK, Krishna SV, Verma K, Pooja K, Bhagawan D, Himabindu V (2018) Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering, 25: 133-146. doi: 10.1016/j.sajce.2018.04.006

Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D (2014) High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Bioresource Technology, 170: 115-124. doi: 10.1016/j.biortech.2014.07.066.

Kuo C-M, Lin T-H, Yang Y-C, Zhang W-X, Lai J-T, Wu H-T, Chang J-S, Lin C-S. (2017) Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency. Bioresource Technology, 244(Pt 1): 243–251. doi: 10.1016/j.biortech.2017.07.096.

Lahan JP, Kalita R, Bora SS, Deka A, Boro RC, Barooah M (2012) Isolation and Identification of Algae from Dhemaji District of Assam, India. Trends in Biosciences, 5(3): 220-221.

Lamadi A, Mulis M and Kristanto AE (2022) The growth of Chlorella sp. cultivated in walne media with different intensities of light. Tomini Journal of Aquatic Science, 1(1): 1–7.

Lee E, Jalalizadeh M and Zhang Q (2015) Growth kinetic models for microalgae cultivation: A review. Algal Research, 12: 497–512. doi: 10.1016/j.algal.2015.10.004.

Lee J-S, Kim D-K, Lee J-P, Park S-C, Koh J-H, Cho H-S, Kim S-W (2002) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresource Technology, 82: 1–4. doi: 10.1016/s0960-8524(01)00158-4.

Li F, Amenorfenyo DK, Zhang Y, Zhang N, Li C, Huang X (2021) Cultivation of Chlorella vulgaris in Membrane-Treated Industrial Distillery Wastewater: Growth and Wastewater Treatment. Frontiers in Environmental Science, 9: 770633. doi: 10.3389/fenvs.2021.770633.

Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2012) Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering, 109: 2222-2229. doi: 10.1002/bit.24491.

Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101(17): 6797-6804. doi: 10.1016/j.biortech.2010.03.120.

Mandal MK and Chaurasia N (2018) Molecular characterization of freshwater microalgae and nutritional exploration to enhance their lipid yield. 3 Biotech, 8(5): 238. doi: 10.1007/s13205-018-1248-5.

Masojídek J and Torzillo G (2014) Mass Cultivation of Freshwater Microalgae. In Encyclopedia of Ecology. Elsevier. pp: 2226-2235. doi: 10.1016/B978-0-12-409548-9.09373-8.

Medhi J and Kalita MC (2020) An Emerging Aquatic Green Gold for Food and Medicine: A Review of Algae From North East India. International Journal of Pharmacy and Pharmaceutical Sciences, 12(12): 7-15. doi: 10.22159/ijpps.2020v12i12.39739.

Morales M, Sánchez L and Revah S (2017) The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiology Letters, 365(3). doi: 10.1093/femsle/fnx262.

Muthuraj M, Kumar V, Palabhanvi B, Das D (2014) Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. Journal of Industrial Microbiology and Biotechnology, 41(3): 499-511. doi: 10.1007/s10295-013-1397-9.

Onyeaka H, Miri T, Obileke K, Hart A, Anumudu C, Al-Sharify ZT (2021) Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science & Technology, 1: 100007. doi: 10.1016/j.ccst.2021.100007.

Phukan MM, Chutia RS, Konwar BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88: 3307-3312. doi: 10.1016/j.apenergy.2010.11.026.

Pooja K, Priyanka V, Rao BCS, Raghavender V (2022) Cost-effective treatment of sewage wastewater using microalgae Chlorella vulgaris and its application as bio-fertilizer. Energy Nexus, 7: 100122. doi: 10.1016/j.nexus.2022.100122.

Priscila Centeno da Rosa A, Carvalho LF, Goldbeck L, Alberto J, Costa V (2011) Carbon dioxide fixation by microalgae cultivated in open bioreactors. Energy Conversion and Management, 52: 3071–3073. doi: 10.1016/j.enconman.2011.01.008.

Purkayastha J, Bora A, Gogoi HK, Singh L (2017) Growth of high oil yielding green alga Chlorella ellipsoidea in diverse autotrophic media, effect on its constituents. Algal Research, 21: 81-88. doi: 10.1016/j.algal.2016.11.009.

Ratha SK, Prasanna R, Dhar DW, Saxena AK. (2012). Bioprospecting and indexing the microalgal diversity of different ecological habitats of India. World Journal of Microbiology and Biotechnology, 28: 1657–1667. doi: 10.1007/s11274-011-0973-2.

Ray B and Das R (2021) Diversity of Chlorophyceae in the Kling Area of Ri-Bhoi district, Meghalaya. Journal of Applied and Fundamental Sciences, 7(2): 78-85.

Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable and Sustainable Energy Reviews, 35: 265e278. doi: 10.1016/j.rser.2014.04.007.

Sakarika M and Kornaros M (2016) Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresource Technology, 219: 694–701. doi: 10.1016/j.biortech.2016.08.033.

Sánchez-Zurano A, Guzmán JL, Acién FG, Fernández-Sevilla JM (2021) An Interactive Tool for Simulation of Biological Models into the Wastewater Treatment with Microalgae. Frontiers in Environmental Science, 9: 721324. doi: 10.3389/fenvs.2021.721324.

Sarkar S, Manna MS, Bhowmick TK, Gayen K (2020) Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96: 58-72. doi: 10.1016/j.procbio.2020.05.025.

Sarker NK and Salam PA (2019) Indoor and outdoor cultivation of Chlorella vulgaris and its application in wastewater treatment in a tropical city—Bangkok, Thailand. SN Applied Sciences, 1: 1645. doi: 10.1007/s42452-019-1704-9.

Sehgal A, Goswami K, Pal M, Chikkaputtaiah C, Chetia P, Boruah HPD (2019) Morpho-taxonomic, genetic, and biochemical characterization of freshwater microalgae as potential biodiesel feedstock. 3 Biotech, 9(4):137. doi: 10.1007/s13205-019-1664-1.

Serra-Maia R, Bernard O, Gonçalves A, Bensalem S, Lopes F (2016) Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Research, 18: 352-359. doi: 10.1016/j.algal.2016.06.016.

Shabani M, Sayadi, MH and Rezaei MR (2016) CO2 bio-sequestration by Chlorella vulgaris and Spirulina platensis in response to different levels of salinity and CO2. In the proceedings of the International Academy of Ecology and Environmental Sciences. 6(2): 53-61.

Sharma B, Paul P, Devi A, Kalita MC, Deka D, Goud VB (2020) Cost effective biomass production of Chlorella homosphaera and Scenedesmus obliquus-two biofuel potent microalgae from Northeast India. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 22(3): 486-490.

Shaw R and Mukherjee S (2022) The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Science & Technology, 2: 100036. doi: 10.1016/j.ccst.2022.100036.

Singh J and Dhar DW (2019) Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Frontiers in Marine Science, 6: 29. doi: 10.3389/fmars.2019.0029.

Singh SP and Singh P (2015) Effect of temperature and light on the growth of algae species: A Review. Renewable and Sustainable Energy Reviews, 50: 431-444. doi: 10.1016/j.rser.2015.05.024.

Singh UB and Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change, 18: 73-95. doi: 10.1007/s11027-012-9393-3.

Song C, Han X, Yin Q, Chen D, Li H, Li S (2021) Performance intensification of CO2 absorption and microalgae conversion (CAMC) hybrid system via low temperature plasma (LTP) treatment. Science of The Total Environment, 801: 149791. doi: 10/1016/j.scitotenv.2021.149791.

Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresource Technology, 102: 3071–3076. doi: 10.1016/j.biortech.2010.10.047.

Teoh M-L, Chu W-L, Marchant H, Phang S-M (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology, 16: 421–430. doi: 10.1007/s10811-005-5502-y.

Thomas DM, Mechery J and Paulose SV (2016) Carbon dioxide capture strategies from flue gas using microalgae: a review. Environmental Science and Pollution Research, 23(17): 16926-16940. doi: 10.1007/s11356-016-7158-3.

Wang C, Li H, Wang Q, Wei P (2010) Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 26(8): 1074-1079.

Yang G-J, Luan Z-Q, Zhou X-H, Mei Y (2010) The Researching of the Effect of Temperature on Chlorella Growth and Content of Dissolved Oxygen and content of Chlorophyll. Mathematical and Physical Fisheries Science, 8: 68â.

Yang Q, Li H, Wang D, Zhang X, Guo X, Pu S, Guo R, Chen J (2020) Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture. Applied Energy, 276: 115502. doi: 10.1016/j.apenergy.2020.115502.

Yasmin F, Buragohain BB and Sarma R (2015) Aquatic Algae from Kaziranga National Park, Assam, India. International Journal of Current Microbiology and Applied Sciences, 4(12): 297-302.

Yu H, Kim J, Rhee C, Shin J, Shin SG, Lee C (2022) Effects of Different pH Control Strategies on Microalgae Cultivation and Nutrient Removal from Anaerobic Digestion Effluent. Microorganisms, 10(2): 357. doi: 10.3390/microorganisms10020357.

Yun Y-S and Park J (2001) Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Applied Microbiology and Biotechnology, 55: 765–770. doi: 10.1007/s002530100639.

Zhu B, Chen G, Cao X, Wei D (2017) Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Bioresource Technology, 244(2): 1207-1215. doi: 10.1016/j.biortech.2017.05.199.

Ziganshina EE, Bulynina SS and Ziganshin AM (2022) Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. Plants (Basel), 11(8):1086. doi: 10.3390/plants11081086.

Downloads

Published

2023-07-31

How to Cite

DHAR, R., DEVI, M. B., & PAUL, D. (2023). Chlorella: Abundance, Applications, and Prospects of CO2 Fixation - A North East India Perspective. International Journal of Life Sciences, 7–16. Retrieved from https://ijlsci.in/ls/index.php/home/article/view/778

Issue

Section

Environmental Pollution