Microbial xylanase production and exploring it’s potential applications
Keywords:
Xylanase, hemicellulose, xylan, Submerge fermentation, solid state fermentationAbstract
This review delves into the fascinating realm of xylan, the primary component of hemicellulose, which ranks among the most abundant natural fibers worldwide. The complex and diverse structure of xylan poses a significant challenge for its breakdown. However, xylanases, extraordinary enzymes, possess the remarkable ability to cleave the intricate -1,4-glycosidic bond within this heterogeneous xylan structure. These exceptional catalysts are produced abundantly by a wide range of microorganisms, including bacteria, fungi, yeast, and marine algae, showcasing the vast biological sources of xylanases. By harnessing genetic regulation in enzyme biosynthesis, various strategies have been developed to scale up xylanase production. The escalating global demand for xylanases stems from their versatility in diverse industries. Their suitability for applications in food and feed, paper and pulp, textiles, medicines, and lignocellulosic biorefineries has rendered them highly sought-after. Consequently, in-depth analysis of complex xylan structures, microbial synthesis of xylanases, and exploration of potential industrial uses have become major areas of research. This comprehensive review provides a profound exploration of xylan and xylanases, shedding light on their remarkable properties, production methods, and wide-ranging applications. The insights presented here establish a foundation for further advancements and the utilization of xylanases across various industries.
Downloads
References
Adiguzel G, Faiz O, Sisecioglu M, et al (2019) A novel endo-β-1,4-xylanase from Pediococcus acidilactici GC25; purification, characterization, and application in clarification of fruit juices. Int J Biol Macromol 129:571–578
Annamalai, N., Thavasi, R., Jayalakshmi, S., & Balasubramanian, T. (2009). Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment.
Aoyama, M., & Seki, K. (1994). Chemical characterization of solubilized xylan from steamed bamboo grass. Holz als Roh-und Werkstoff, 52(6), 388-388.
Aoyama, M., Seki, K., & Saito, N. (1995). Solubilization of bamboo grass xylan by steaming treatment.
Archibald, F. S. (1992). The role of fungus-fiber contact in the biobleaching of kraft brown stock by Trametes (Coriolus) Versicolor.
Assor C, Quemener B, Vigouroux J, Lahaye M (2013) Fractionation and structural characterization of LiCl-DMSO soluble hemicelluloses from tomato. Carbohydr Polym 94:46–55
Babalola, T. O. O., Apata, D. F., & Atteh, J. O. (2006). Effect of β‐xylanase supplementation of boiled castor seed meal‐based diets on the performance, nutrient absorbability, and some blood constituents of pullet chicks. Tropical Science, 46(4), 216-223.
Bajpai, P. (2014). Sources, production, and classification of xylanases. Xylanolytic enzymes, 43-52.
Bandikari, R., Poondla, V., & Obulam, V. S. R. (2014). Enhanced production of xylanase by solid-state fermentation using Trichoderma koeningi isolates: effect of pretreated agro-residues. 3 Biotech, 4, 655-664.
Banka, A. L., Albayrak Guralp, S., & Gulari, E. (2014). Secretory expression and characterization of two hemicellulases, xylanase, and β-xylosidase, isolated from Bacillus subtilis M015. Applied biochemistry and biotechnology, 174, 2702-2710.
Bansod, S. M., Dutta-Choudhary, M., Srinivasan, M. C., & Rele, M. V. (1993). Xylanase is active at high pH from an alkalotolerant Cephalosporium species. Biotechnology letters, 15, 965-970.
BAZUS. A.. RIGAl. L., GASET, A., FONTAlNE.. T.. WIERUSZESKI, J.-M.AND FOURNET, B. (1993).Isolation and characterization of hemicelluloses from sunflover hulls. Carbohydrate Re.w~lll'ch 243, 323-332.
Beg Q.K., Kapoor M., Mahajan L., Hoondal G.S., 2001. Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56:326-338
Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme and Microbial Technology, 27(7), 459-466.
Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56(3-4), 326-338.
Beg, Q., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: a review. Applied microbiology and biotechnology, 56, 326-338.
BHADlJRI, S.K., GHOSH, I.N. AND DEB SARKAR, N.L. (1995). RaInie hemiceHulose as a beater Additive in papernlaking from jute-stick kraft pulp. B, du, trial Crop.; and Products 4, 79-84.
Billa, E., Koullas, D. P., Monties, B., & Koukios, E. G. (1997). Structure and composition of sweet sorghum stalk components. Industrial Crops and Products, 6(3-4), 297-302.
Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green chemistry, 15(3), 550-583.
Buchert, J., Oksanen, T., Pere, J., Siika-aho, M., Suurnäkki, A., Viikari, L., & Viikari, L. (1995). Application of Trichoderma reesei cellulases and hemicellulases in the pulp and paper industry. Enzyme and Microbial Technology, 17(11), 1030-1034.
Cara C, Ruiz E, Ballesteros I, Negro M, Castro E (2006) Enhanced enzymatic hydrolysis of Olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem 41:423–429
Chakdar, H., Kumar, M., Pandiyan, K., Singh, A., Nanjappan, K., Kashyap, P. L., & Srivastava, A. K. (2016). Bacterial xylanases: biology to biotechnology. 3 Biotech, 6, 1-15.
Chanliaud, E., Saulnier, L., & Thibault, J. F. (1995). Alkaline extraction and characterization of heteroxylans from maize bran. Journal of Cereal Science, 21(2), 195-203.
Cheng, X., Chen, G., Huang, S., & Liang, Z. (2013). Biobleaching effects of crude xylanase from Streptomyces griseorubens LH-3 on Eucalyptus kraft pulp. Bioresources, 8(4), 6424-6433.
Christakopoulos, P., Nerinckx, W., Kekos, D., Macris, B., & Claeyssens, M. (1996). Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. Journal of Biotechnology, 51(2), 181-189.
Collins, T., Gerday, C., & Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 29(1), 3-23.
Curling S, Fowler P, Hill C (2007) Development of a method for the production of hemicellulosic gels from Sitka spruce. Carbohydr Polym 69:673–677
Danalache, F., Mata, P., Alves, V. D., & Moldão-Martins, M. (2018). Enzyme-assisted extraction of fruit juices. In Fruit juices (pp. 183-200). Academic Press.
Döring, C., Jekle, M., & Becker, T. (2016). Technological and analytical methods for arabinoxylan quantification from cereals. Critical Reviews in Food Science and Nutrition, 56(6), 999-1011.
Ebringerova A, Heinze T (2000) Xylan and xylan derivatives-biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures, and properties.Macromol Rapid Commun 21:542–556
Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67
Ebringerová A, Hromádková Z, Hribalova V, Mason T (1997) Effect of ultrasound on the Immunogenic corn cob xylan. Ultrason Sonochem 4:311–315
Ebringerová, A., & Hromádková, Z. (1999). Xylans of industrial and biomedical importance. Biotechnology and Genetic Engineering Reviews, 16(1), 325-346.
Ebringerová, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. In Polysaccharides I: Structure, Characterization and Use (pp. 1-67). Springer.
Facchini FDA, Vici AC, Reis VRA et al (2011) Production of fibrinolytic enzymes by Aspergillus japonicus C03 using agro-industrial residues with potential application as additives in animal feed. Bioprocess Biosyst Eng 34:347–355
Fincher, G. B., & Stone, B. A. (1986). Cell walls and their components in cereal grain Technology. Advances in Cereal Science and Technology (USA).
Frederick, M. M., Kiang, C. H., Frederick, J. R., & Reilly, P. J. (1985). Purification and characterization of endo‐xylanases from Aspergillus niger. I. Two isozymes are active on xylan backbones near branch points. Biotechnology and Bioengineering, 27(4), 525-532.
Fu, G. Q., Hu, Y. J., Bian, J., Li, M. F., Peng, F., & Sun, R. C. (2019). Isolation, purification, and potential applications of xylan. Production of materials from sustainable biomass resources, 3-35.
Fu, J., Yang, X., & Yu, C. (2008). Preliminary research on bamboo degumming with xylanase. Biocatalysis and Biotransformation, 26(5), 450-454.
Ganzler K, Salgo A, Valko K (1986) Microwave extraction: a novel sample preparation Method for chromatography. J Chromatogr A 371:299–306
Gerasimova, J., & Kuisiene, N. (2012). Characterization of the novel xylanase from the thermophilic Geobacillus thermodenitrificans JK1. Microbiology, 81, 418-424.
Gessesse, A., & Mamo, G. (1999). High-level xylanase production by an alkaliphilic Bacillus sp. By using solid-state fermentation. Enzyme and microbial technology, 25(1-2), 68-72.
Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194
Gröndahl, M., Teleman, A., & Gatenholm, P. (2003). Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydrate Polymers, 52(4), 359-366.
Guleria, S., Walia, A., Chauhan, A., & Shirkot, C. K. (2013). Optimization of cultural conditions for cellulase-free xylanase production by a mutant strain of alkalophilic Cellulosimicrobium sp. CKMX1 in submerged fermentation. Applied Biological Research, 15(2), 137-144.
Gupta, V., Garg, S., Capalash, N., Gupta, N., & Sharma, P. (2015). Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. And B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess and biosystems engineering, 38, 947-956.
Hartley, R. D., & Jones, E. C. (1976). Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry, 15(7), 1157-1160.
Hu, L., Du, M., & Zhang, J. (2017). Hemicellulose-based hydrogels present status and application prospects: A brief review. Open Journal of Forestry, 8(1), 15-28.
Huang, J., Wang, G., & Xiao, L. (2006). Cloning, sequencing, and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. Bioresource Technology, 97(6), 802-808.
Inagaki, K., Nakahira, K., Mukai, K., Tamura, T., & Tanaka, H. (1998). Gene cloning and characterization of acidic xylanase from Acidobacterium capsulatum. Bioscience, biotechnology, and biochemistry, 62(6), 1061-1067.
Ishii, T., Hiroi, T., & Thomas, J. R. (1990). Feruloylated xyloglucan and p-coumaroyl arabinoxylan oligosaccharides from bamboo shoot cell walls. Phytochemistry, 29(6), 1999-2003.
Izydorczyk, M. S., & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate polymers, 28(1), 33-48.
Jain, A. (1995). Production of xylanase by thermophilic Melanocarpus albomyces IIS-68. Process Biochemistry, 30(8), 705-709.
Joseleau, J. P., Comtat, J., & Ruel, K. (1992). Chemical structure of xylans and their interaction in the plant cell walls.
Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., & Chaabouni, S. E. (2015). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food and Bioproducts Processing, 94, 536-546.
Kamble, R. D., & Jadhav, A. R. (2012). Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid-state fermentation. International Journal of Microbiology, 2012.
Khanna, S. (1993). Regulation, purification, and properties of xylanase from Cellulomonas fimi. Enzyme and Microbial Technology, 15(11), 990-995.
Kimura, I., Sasahara, H., & Tajima, S. (1995). Purification and characterization of two xylanases and an arabinofuranosidase from Aspergillus sojae. Journal of Fermentation and Bioengineering, 80(4), 334-339.
Lawther J, Sun R, Banks W (1996) Effects of extraction conditions and alkali type on yield And composition of wheat straw hemicellulose. J Appl Polym Sci 60:1827–1837
Lee, S. F., Forsberg, C. W., & Rattray, J. B. (1987). Purification and characterization of two endo xylanases from Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 53(4), 644-650.
Mandal A., 2015. Review on microbial xylanases and Their Applications. International Journal of Life Sciences, 4(3):178-187
Manenoi, A., & Paull, R. E. (2007). Papaya fruit softening, endo xylanase gene expression, protein, and activity. Physiologia Plantarum, 131(3), 470-480.
Mason T, Paniwnyk L, Lorimer J (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:253–260
Maurya D, Singla A, Negi S (2015) An overview of key pretreatment processes for biological Conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609
Minjares-Fuentes, R., Femenia, A., Garau, M. C., Candelas-Cadillo, M. G., Simal, S., & Rosselló, C. (2016). Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydrate Polymers, 138, 180-191.
Motta, F. L., Andrade, C. C. P., & Santana, M. H. A. (2013). A review of xylanase production by the fermentation of xylan: classification, characterization and applications. Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization, 1, 251-276.
Paice, M. G., Gurnagul, N., Page, D. H., & Jurasek, L. (1992). Mechanism of hemicellulose-directed bleaching of kraft pulps. Enzyme and microbial technology, 14(4), 272-276.
Panchev I, Kirtchev N, Kratchanov C (1994) On the production of low esterified pectins by Acid maceration of pectic raw materials with ultrasound treatment. Food Hydrocoll 8:9–17
Panthapulakkal S, Kirk D, Sain M (2015) Alkaline extraction of xylan from wood using Microwave and conventional heating. J Appl Polym Sci 132
Peng F, Peng P, Xu F, Sun R (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903
Peng, F., Ren, J. L., Xu, F., Bian, J., Peng, P., & Sun, R. C. (2012). Structural characterization of hemicelluloses from bamboo: Part 2. Acetylated hemicelluloses and their enzymatic hydrolysis. Carbohydrate Polymers, 89(4), 774-783.
Pettersen, R. C. (1984). The chemical composition of wood. The chemistry of solid wood, 207, 57-126.
Polizeli, M. D. L. T. D. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied microbiology and biotechnology, 67, 577-591.
Prade, R. A. (1996). Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering Reviews, 13(1), 101-132.
Ramachandra Swamy, N., & Salimath, P. V. (1990). Structural features of acidic xylans isolated from red gram Cajanus Cajan husk. Carbohydrate research, 197, 327-337.
Saeed, F., Pasha, I., Anjum, F. M., & Sultan, M. T. (2011). Arabinoxylans and Arabinogalactans: a comprehensive treatise. Critical Reviews in Food Science and Nutrition, 51(5), 467–476.
Schmoll, M. (2018). Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biology and Biotechnology, 5(1), 10.
Shao W, DeBlois S, Wiegel J (1995) A high molecular weight, cell-associated xylanase isolated from exponentially growing Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61:937–940
Shi Z, Xiao L, Deng J, Yang H, Song L, Sun R (2013) Isolation and structural exploration Of hemicelluloses from the largest bamboo species: Dendrocalamus sinicus. Bioresources 8:5036–5050
Shi, Z., Zhang, Y., Wan, J., Li, Y., & Chang, S. (2013). Fractionation and structural characterization of hemicelluloses from bamboo (Dendrocalamus sinicus). Industrial Crops and Products, 44, 11-18.
Singh R, Banerjee J, Sasmal S, Muir J, Arora A (2018) High xylan recovery using two stages Alkali pre-treatment process from high lignin biomass and its valorization to xylooligosaccharides of low degree of polymerization. Bioresour Technol 256:110–117
Stephen, A. M. (1983). Other plant polysaccharides. In The polysaccharides (pp. 97-193). Academic Press.Neto, C. P. (1997). Seca A, Nunes AM, Coimbra MA, Domingues F, Evtuguin D, Silvestre A, Cavaleiro JAS. Variations in chemical composition and structure of macromolecular components in different morphological regions and maturity stages of Arundo donax. Industrial Crops and Products, 6(1), 51-58.
Stewart, D., Azzini, A., Hall, A. T., & Morrison, I. M. (1997). Sisal fibers and their constituent non-cellulosic polymers. Industrial Crops and Products, 6(1), 17-26.
Subramaniyan S., Prema P., 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22(1):33-64
Subramaniyan, S., & Prema, P. (2002). Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology, 22(1), 33-64.
Sun R, Lawther J, Banks W (1998) Extraction and characterization of xylose-rich pectic Polysaccharide from wheat straw. Int J Polym Anal Charact 4:345–356
Sun, J. X. suN, xF; suN, rC; And, su yq, 2004 A. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers, 56, 195-204.
Teleman, A., Tenkanen, M., Jacobs, A., & Dahlman, O. (2002). Characterization of O-acetyl-(4-O-methylglucurono) xylan isolated from birch and beech. Carbohydrate research, 337(4), 373-377.
Tenkanen, M., Puls, J., & Poutanen, K. (1992). Two major xylanases of Trichoderma reesei. Enzyme and microbial technology, 14(7), 566-574.
Thomas L, Sindhu R, Binod P, Pandey A (2015) Production of an alkaline xylanase from recombinant Kluyveromyces lactis (KY1) by submerged fermentation and its application in bio-bleaching. Biochem Eng J 102:24–30
Thomas, L., Ushasree, M. V., & Pandey, A. (2014). An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. Bioresource technology, 165, 309-313.
Timell, T. E. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Science and Technology, 1(1), 45-70.
van Hazendonk, J. M., Reinerik, E. J., de Waard, P., & van Dam, J. E. (1996). Structural analysis of acetylated hemicellulose polysaccharides from fibre flax (Linum usitatissimum L.). Carbohydrate Research, 291, 141-154.
Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350
Viikari, L., Kantelinen, A., Poutanen, K., & Ranua, M. (1990). Characterization of pulps treated with hemicellulolytic enzymes prior to bleaching. In 4th International Conference on Biotechnology in the Pulp and Paper Industry (pp. 145-151). Butterworth-Heinemann.
Vinkx, C. J. A., & Delcour, J. A. (1996). Rye (Secale cerealeL.) Arabinoxylans: A Critical Review. Journal of Cereal Science, 24(1), 1–14.
Virupakshi, S., Babu, K. G., Gaikwad, S. R., & Naik, G. R. (2005). Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation. Process Biochemistry, 40(1), 431-435.
Walia A, Mehta P, Chauhan A, Shirkot CK. Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol. 2013;63:187–198.
Walia, A., Mehta, P., Chauhan, A., & Shirkot, C. K. (2013). Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Annals of microbiology, 63, 187-198.
Wong, K. K., & Saddler, J. N. (1992). Trichoderma xylanases, their properties and application. Critical reviews in Biotechnology, 12(5-6), 413-435.
Wong, K. K., Tan, L. U., Saddler, J. N., Mabee, W. E., Chornet, E., & Overend, R. P. (2014). Xylanase hydrolysis of steam-pretreated hybrid poplar: the factors influencing enzymatic hydrolysis of xylan and the by-products inhibition. Enzyme and Microbial Technology, 15(11), 889-901.
Xu F, Sun J, Geng Z, Liu C, Ren J, Sun R, Fowler P, Baird M (2007) Comparative study Of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium Peree). Carbohydr Polym 67:56–65
Yamasaki T, Enomoto A, Kato A, Ishii T, Shimizu K (2011) Structural unit of xylans from Sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa). J Wood Sci 57:76–84
Yamasaki, T., Kim, U. J., Nishimura, H., Suzuki, S., & Yoshida, S. (2011). Structural features of hemicellulosic polysaccharides from Cryptomeria japonica and Chamaecyparis obtusa. Journal of Wood Science, 57(3), 258-265.
Yamaura, I., Koga, T., Matsumoto, T., & Kato, T. (1997). Purification and Some Properties of Endo-l, 4-β-d-xylanase from a Fresh-water Mollusc, Pomacea insularus (de Ordigny). Bioscience, biotechnology, and biochemistry, 61(4), 615-620.
Yang, Z., Fan, X., Bakalis, S., Parker, D. J., & Fryer, P. J. (2008). Impact of solids fraction and fluid viscosity on solids flow in rotating cans. Food research international, 41(6), 658-666.
Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for Biofuels and biochemicals: a review. Bioresour Technol 199:21–33
Zhang, Z., Smith, C., & Li, W. (2014). Extraction and modification technology of Arabinoxylans from cereal by-products: A critical review. Food Research International, 65, 423–436.
Zhou, X., Li, W., Mabon, R., & Broadbelt, L. J. (2017). A critical review on hemicellulose pyrolysis. Energy Technology, 5(1), 52-79.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 author
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/