Discovery of Small Molecule TLR4 Inhibitors as Potential Therapy for Alzheimer’s Disease

Authors

  • Sindhu Vemulapalli Cornell University

Keywords:

TLR4, Neuroinflammation, Alzheimer's Disease, Virtual Screening, Drug Discovery

Abstract

Alzheimer’s is a potent neurodegenerative disease that causes cognitive decline. Microglia are phagocytes in the brain that can play a role in cell death and neuroinflammation, leading to Alzheimer’s. Microglia have surface receptors that activate them when ligated, and one such receptor is toll-like receptor 4 (TLR4) which this research focuses on inhibiting. By identifying compounds that obstruct the pathway between TLR4 and microglia, the neuroinflammatory response associated with microglial activation in neurodegenerative diseases will be reduced. Although experiments targeting TLR4 inhibition have been performed, this paper employs a novel approach by using a database of 20 million compounds for virtual screening to identify a suitable target compound, overcoming limitations in past studies. To execute the drug discovery process, TLR4’s binding sites were identified using a geometric, energetic, and machine-learning approach. Then, pharmacophore maps were created and virtual screening was conducted to identify 20 compounds that could inhibit TLR4. The 10 molecules with the most favorable Gibbs Free Energy were selected and their absorption and toxicity were tested. This process yielded one promising compound as a TLR4 and Alzheimer’s antagonist.

Downloads

Download data is not yet available.

References

Akira S, Uematsu S, Takeuchi O. Pathogen Recognition and Innate Immunity. Cell. 2006;124(4):783–801. doi: 10.1016/j.cell.2006.02.015.

Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, Kaddoumi A. Glial Cell-Mediated Neuroinflammation in Alzheimer's Disease. Int J Mol Sci. 2022 Sep 12;23(18):10572. doi: 10.3390/ijms231810572. PMID: 36142483; PMCID: PMC9502483.

Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci. 2003 Apr 1;23(7):2665-74. doi: 10.1523/JNEUROSCI.23-07-02665.2003. PMID: 12684452; PMCID: PMC6742111.

Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 (Web server issue); NAR.

Bugnon M, Röhrig UF, Goullieux M, Perez MAS, Daina A, Michielin O, Zoete V. SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024.

Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, Núñez L. Role of Toll Like Receptor 4 in Alzheimer's Disease. Front Immunol. 2020 Aug 26;11:1588. doi: 10.3389/fimmu.2020.01588. PMID: 32983082; PMCID: PMC7479089.

Centers for Disease Control and Prevention. What Is Alzheimer’s Disease? 26 Oct. 2020. [Online] Available: https://www.cdc.gov/aging/aginginfo/alzheimers.htm [Accessed: 30 June 2024].

Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017 Sep;38(9):1205-1235. doi: 10.1038/aps.2017.28. Epub 2017 Jul 17. PMID: 28713158; PMCID: PMC5589967.

Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2021 Feb;78(4):1233-1261. doi: 10.1007/s00018-020-03656-y. Epub 2020 Oct 15. PMID: 33057840; PMCID: PMC7904555.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: 10.1038/s41598-017-42817-6.

Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol. 2022 Mar 3;13:812774. doi: 10.3389/fimmu.2022.812774. PMID: 35309296; PMCID: PMC8927970.

Alzheimer's disease facts and figures. Alzheimer's Dement. 19:1598-1695. doi: 10.1002/alz.13016. Available at: https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.13016 [Accessed: 20 June 2024].

Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010 Mar 19;140(6):918-34. doi: 10.1016/j.cell.2010.02.016. PMID: 20303880; PMCID: PMC2873093.

Hur JY. γ-Secretase in Alzheimer's disease. Exp Mol Med. 2022 Apr;54(4):433-446. doi: 10.1038/s12276-022-00754-8. Epub 2022 Apr 8. PMID: 35396575; PMCID: PMC9076685.

J Jendele, Lukas et al. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019;47(W1). doi: 10.1093/nar/gkz339.

Koes DR, Camacho CJ. PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure. Nucleic Acids Res. 2012;40(Web Server issue). doi: 10.1093/nar/gks317.

Koes DR, Camacho CJ. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 2012;40(Web Server issue). doi: 10.1093/nar/gks375.

Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020 Nov 26;9(1):42. doi: 10.1186/s40035-020-00221-2. PMID: 33239064; PMCID: PMC7689983.

Mangalmurti A, Lukens JR. How neurons die in Alzheimer's disease: Implications for neuroinflammation. Curr Opin Neurobiol. 2022 Aug;75:102575. doi: 10.1016/j.conb.2022.102575. Epub 2022 Jun 10. PMID: 35691251; PMCID: PMC9380082.

Ngan CH, Kryshtafovych A, Chen S, Wu Y, Lai Y, Borhani DW, et al. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics. 2012;28(2):286-7. doi: 10.1093/bioinformatics/btr643.

Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015 Feb;72(3):557-581. doi: 10.1007/s00018-014-1762-5. Epub 2014 Oct 22. PMID: 25332099; PMCID: PMC4293489.

Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells. 2022 Jun 10;11(12):1885. doi: 10.3390/cells11121885. PMID: 35741014; PMCID: PMC9221514.

Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: improving the flexibility and robustness for small-molecule docking. J Chem Inf Model. 2023;63(4):1445-1452. doi: 10.1021/acs.jcim.2c01471.

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer's disease. Lancet. 2021 Apr 24;397(10284):1577-1590. doi: 10.1016/S0140-6736(20)32205-4. Epub 2021 Mar 2. PMID: 33667416; PMCID: PMC8354300.

SwissDock 2024: major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024.

Volkamer A, Kuhn D, Rippmann F, Sticht H. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(2):360-72. doi: 10.1021/ci200507h.

Wu L, Xian X, Xu G, Tan Z, Dong F, Zhang M, Zhang F. Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm. 2022 Aug 21;2022:7924199. doi: 10.1155/2022/7924199. PMID: 36046763; PMCID: PMC9420645.

Yang J, Wise L, Fukuchi KI. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer's Disease. Front Immunol. 2020 Apr 23;11:724. doi: 10.3389/fimmu.2020.00724. PMID: 32391019; PMCID: PMC7190872.

Zusso M, Lunardi V, Franceschini D, Pagetta A, Lo R, Stifani S, Frigo AC, Giusti P, Moro S. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation. 2019 Jul 18;16(1):148. doi: 10.1186/s12974-019-1538-9. PMID: 31319868; PMCID: PMC6637517.

Downloads

Published

2024-09-30

How to Cite

Vemulapalli, S. (2024). Discovery of Small Molecule TLR4 Inhibitors as Potential Therapy for Alzheimer’s Disease. International Journal of Life Sciences, 12(3), 291–301. Retrieved from https://ijlsci.in/ls/index.php/home/article/view/918